Physics > Centre of Mass and Conservation of Linear Momentum > 10.0 Head on elastic and inelastic collision

  Centre of Mass and Conservation of Linear Momentum
    1.0 Introduction
    2.0 Position of centre of mass of continuous bodies
    3.0 Centre of mass of the remaining portion
    4.0 Laws of conservation of linear momentum
    5.0 Variable Mass
    6.0 Impulse
    7.0 Collision
    8.0 Types of collision
    9.0 Newton's law of restitution
    10.0 Head on elastic and inelastic collision
    11.0 Collision in two dimension
    12.0 Oblique collision

10.2 Head on inelastic collision



In inelastic collision, only linear momentum of the colliding bodies is conserved before and after the collision.

In inelastic collision, both the bodies do not come to their original shape and size after the collision.

So some fraction of energy remains stored as deformation potential energy in the bodies.

So, the total energy before and after the collision is not same. Therefore the kinetic energy is not conserved in case of inelastic collision.

Let us consider two balls $A$ & $B$ of masses $m_1$ & $m_2 $ respectively. Their velocities are $u_1$ & $u_2$
$\left( {{u_1} > {u_2}} \right)$ before the collision and $v_1$ & $v_2$ after the collision along the same line.

Conservation of linear momentum along the horizontal direction,
$${m_1}{\overrightarrow u _1} + {m_2}{\overrightarrow u _2} = {m_1}{\overrightarrow v _1} + {m_2}{\overrightarrow v _2}\quad ...(i)$$
For inelastic collision we know $(e<1)$, $$\begin{equation} \begin{aligned} e = \frac{{{v_{{2_{CN}}}} - {v_{{1_{CN}}}}}}{{{u_{{1_{CN}}}} - {u_{{2_{CN}}}}}} \\ e = \frac{{{{\overrightarrow v }_2} - {{\overrightarrow v }_1}}}{{{{\overrightarrow u }_1} - {{\overrightarrow u }_2}}} \\ {\overrightarrow v _2} = {\overrightarrow v _1} + \left( {{{\overrightarrow u }_1} - {{\overrightarrow u }_2}} \right)e\quad ...(ii) \\\end{aligned} \end{equation} $$
From equation $(i)$ & $(ii)$ we get, $$\begin{equation} \begin{aligned} {m_1}{\overrightarrow u _1} + {m_2}{\overrightarrow u _2} = {m_1}{\overrightarrow v _1} + {m_2}\left[ {{{\overrightarrow v }_1} + \left( {{{\overrightarrow u }_1} - {{\overrightarrow u }_2}} \right)e} \right] \\ {m_1}{\overrightarrow u _1} + {m_2}{\overrightarrow u _2} = {m_1}{\overrightarrow v _1} + {m_2}{\overrightarrow u _1}e - {m_2}{\overrightarrow u _2}e \\ {\overrightarrow v _1}\left( {{m_1} + {m_2}} \right) = \left( {{m_1} - e{m_2}} \right){\overrightarrow u _1} + \left( {{m_2} + e{m_2}} \right){\overrightarrow u _2} \\\end{aligned} \end{equation} $$
$${\overrightarrow v _1} = \frac{{\left( {{m_1} - e{m_2}} \right)}}{{\left( {{m_1} + {m_2}} \right)}}{\overrightarrow u _1} + \frac{{\left( {{m_2} + e{m_2}} \right)}}{{\left( {{m_1} + {m_2}} \right)}}{\overrightarrow u _2}\quad ...(iii)$$
Similarly, $${\overrightarrow v _2} = \frac{{\left( {{m_2} - e{m_1}} \right)}}{{\left( {{m_1} + {m_2}} \right)}}{\overrightarrow u _2} + \frac{{\left( {{m_1} + e{m_1}} \right)}}{{\left( {{m_1} + {m_2}} \right)}}{\overrightarrow u _1}\quad ...(iv)$$

Special cases

  • For elastic collision $(e=1)$
$$\begin{equation} \begin{aligned} {\overrightarrow v _1} = \frac{{\left( {{m_1} - {m_2}} \right)}}{{\left( {{m_1} + {m_2}} \right)}}{\overrightarrow u _1} + \frac{{2{m_2}}}{{\left( {{m_1} + {m_2}} \right)}}{\overrightarrow u _2} \\ {\overrightarrow v _2} = \frac{{\left( {{m_2} - {m_1}} \right)}}{{\left( {{m_1} + {m_2}} \right)}}{\overrightarrow u _2} + \frac{{2{m_1}}}{{\left( {{m_1} + {m_2}} \right)}}{\overrightarrow u _1} \\\end{aligned} \end{equation} $$

We get the exactly same equation as derived earlier for elastic collision.

  • For inelastic collision $(e=0)$

$$\begin{equation} \begin{aligned} {\overrightarrow v _1} = \frac{{{m_1}{{\overrightarrow u }_1} + {m_2}{{\overrightarrow u }_2}}}{{\left( {{m_1} + {m_2}} \right)}} \\ {\overrightarrow v _2} = \frac{{{m_1}{{\overrightarrow u }_1} + {m_2}{{\overrightarrow u }_2}}}{{\left( {{m_1} + {m_2}} \right)}} \\\end{aligned} \end{equation} $$
So, when two bodies moving along the same line undergoes perfectly inelastic collision. They stick to each other.

  • When $\left( {{m_1} \gg {m_2}} \right)$
If $\left( {{m_1} \gg {m_2}} \right)$, then $\frac{{{m_2}}}{{{m_1}}} \approx 0$
$$\begin{equation} \begin{aligned} {\overrightarrow v _1} = \frac{{\left( {1 - \frac{{e{m_2}}}{{{m_1}}}} \right)}}{{\left( {1 + \frac{{{m_2}}}{{{m_1}}}} \right)}}{\overrightarrow u _1} + \frac{{\left( {\frac{{{m_2}}}{{{m_1}}} + \frac{{e{m_2}}}{{{m_1}}}} \right)}}{{\left( {1 + \frac{{{m_2}}}{{{m_1}}}} \right)}}{\overrightarrow u _2} \\ {\overrightarrow v _1} = {\overrightarrow u _1} \\\end{aligned} \end{equation} $$ and $$\begin{equation} \begin{aligned} {\overrightarrow v _2} = \frac{{\left( {\frac{{{m_2}}}{{{m_1}}} - e} \right)}}{{\left( {1 + \frac{{{m_2}}}{{{m_1}}}} \right)}}{\overrightarrow u _2} + \frac{{\left( {1 + e} \right)}}{{\left( {1 + \frac{{{m_2}}}{{{m_1}}}} \right)}}{\overrightarrow u _1} \\ {\overrightarrow v _2} = \left( {1 + e} \right){\overrightarrow u _1} - e{\overrightarrow u _2} \\\end{aligned} \end{equation} $$
When a very heavy body collides with a lighter body, velocity of the heavy body remains unchanged.

  • When $\left( {{m_1} = {m_2}} \right)$
$${\overrightarrow v _1} = \frac{{\left( {1 - e} \right)}}{2}{\overrightarrow u _1} + \frac{{\left( {1 + e} \right)}}{2}{\overrightarrow u _2}$$ and $${\overrightarrow v _2} = \frac{{\left( {1 - e} \right)}}{2}{\overrightarrow u _2} + \frac{{\left( {1 + e} \right)}}{2}{\overrightarrow u _1}$$

Question 22. A ball of mass $m$ moving at a speed $v$ makes a head-on collision with an identical ball at rest. The kinetic energy of the balls after the collision is three fourth of the original. Find the coefficient of restitution.

Solution: Initial linear momentum $\left( {{{\overrightarrow p }_i}} \right)$,
$$\begin{equation} \begin{aligned} {\overrightarrow p _i} = mv\widehat i + m(0) \\ {\overrightarrow p _i} = mv\widehat i\quad ...(i) \\\end{aligned} \end{equation} $$
Let the velocity after collision be ${\overrightarrow v _1}$ & ${\overrightarrow v _2}$. Final linear momentum $\left( {{{\overrightarrow p }_f}} \right)$, $$\begin{equation} \begin{aligned} {\overrightarrow p _f} = m{\overrightarrow v _1} + m{\overrightarrow v _2} \\ {\overrightarrow p _f} = m\left( {{{\overrightarrow v }_1} + {{\overrightarrow v }_2}} \right)\quad ...(ii) \\\end{aligned} \end{equation} $$
From equation $(i)$ & $(ii)$ we get, $$\begin{equation} \begin{aligned} {\overrightarrow p _i} = {\overrightarrow p _f} \\ mv\widehat i = m\left( {{{\overrightarrow v }_1} + {{\overrightarrow v }_2}} \right) \\ v\widehat i = \left( {{{\overrightarrow v }_1} + {{\overrightarrow v }_2}} \right)\quad ...(iii) \\\end{aligned} \end{equation} $$
Coefficient of restitution $(e)$, $$\begin{equation} \begin{aligned} e = \frac{{{v_{{2_{CN}}}} - {v_{{1_{CN}}}}}}{{{u_{{1_{CN}}}} - {u_{{2_{CN}}}}}} \\ e = \frac{{{{\overrightarrow v }_2} - {{\overrightarrow v }_1}}}{{v\widehat i - 0}} \\ {\overrightarrow v _2} - {\overrightarrow v _1} = ev\widehat i\quad ...(iv) \\\end{aligned} \end{equation} $$
From equation $(iii)$ & $(iv)$ we get, $$\begin{equation} \begin{aligned} {\overrightarrow v _1} = \left( {\frac{{1 - e}}{2}} \right)v\widehat i\quad ...(v) \\ {\overrightarrow v _2} = \left( {\frac{{1 + e}}{2}} \right)v\widehat i\quad ...(vi) \\\end{aligned} \end{equation} $$
Initial kinetic energy $\left( {{K_i}} \right)$, $${K_i} = \frac{1}{2}m{v^2}\quad ...(vii)$$
Final kinetic energy $\left( {{K_f}} \right)$, $${K_f} = \frac{1}{2}mv_1^2 + \frac{1}{2}mv_2^2\quad ...(viii)$$
From the question, $$\begin{equation} \begin{aligned} {K_f} = \frac{3}{4}{K_i} \\ \frac{1}{2}m\left( {v_1^2 + v_2^2} \right) = \frac{3}{4} \times \frac{1}{2}m{v^2} \\ 4\left( {v_1^2 + v_2^2} \right) = 3{v^2}\quad ...(ix) \\\end{aligned} \end{equation} $$
From equation $(v)$, $(vi)$ & $(ix)$ we get, $$\begin{equation} \begin{aligned} 4{\left[ {\frac{{\left( {1 - e} \right)}}{2}v} \right]^2} + 4{\left[ {\frac{{\left( {1 + e} \right)}}{2}v} \right]^2} = 3{v^2} \\ e = \frac{1}{{\sqrt 2 }} \\\end{aligned} \end{equation} $$

Question 23. A bullet of mass $m$ moving with a horizontal velocity $u$ strikes a stationary block of mass $M$ suspended by a string of length $L$. The bullet gets embedded in the block. What is the maximum angle made by the string after impact?


Solution: Initial linear momentum, $${\overrightarrow p _i} = mu\widehat i + M(0)\quad ...(i)$$

After the bullet gets embedded in the block. They move with velocity $v$.

Final linear momentum, $${\overrightarrow p _f} = (M + m)v\widehat i\quad ...(ii)$$
From equation $(i)$ & $(ii)$ we get, $$\begin{equation} \begin{aligned} {\overrightarrow p _i} = {\overrightarrow p _f} \\ mu\widehat i = (m + M)v\widehat i \\ v = \frac{{mu}}{{(M + m)}}\widehat i\quad ...(iii) \\\end{aligned} \end{equation} $$
From the figure, $$h = L(1 - \cos \theta )\quad ...(iv)$$
Mechanical energy at position $A$ & $B$ are constant. Mathematically,
$$\begin{equation} \begin{aligned} P{E_A} + {K_A} = P{E_B} + {K_B} \\ 0 + \frac{1}{2}\left( {M + m} \right){v^2} = \left( {M + m} \right)gL(1 - \cos \theta ) \\ \cos \theta = 1 - \frac{{{u^2}}}{{2gL}}{\left( {\frac{m}{{M + m}}} \right)^2} \\ \theta = {\cos ^{ - 1}}\left[ {1 - \frac{{{u^2}}}{{2gL}}{{\left( {\frac{m}{{M + m}}} \right)}^2}} \right] \\\end{aligned} \end{equation} $$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD