Physics > Centre of Mass and Conservation of Linear Momentum > 2.0 Position of centre of mass of continuous bodies

  Centre of Mass and Conservation of Linear Momentum
    1.0 Introduction
    2.0 Position of centre of mass of continuous bodies
    3.0 Centre of mass of the remaining portion
    4.0 Laws of conservation of linear momentum
    5.0 Variable Mass
    6.0 Impulse
    7.0 Collision
    8.0 Types of collision
    9.0 Newton's law of restitution
    10.0 Head on elastic and inelastic collision
    11.0 Collision in two dimension
    12.0 Oblique collision

2.11 Questions

Question 5. A rod of length $L$ is placed along the $x$ axis between $x=0$ and $x=L$. The linear mass density $\lambda $ of the rod varies with distance $x$ from the origin as $\lambda = a + bx$, where $a$ & $b$ are constants. Find the position of the centre of mass of the rod.


Solution: Consider a small section of the rod of mass $dm$ and length $dx$ at a distance $x$ from one end of the rod.


So, $$\begin{equation} \begin{aligned} dm = \lambda dx \\ dm = (a + bx)dx\quad ...(i) \\\end{aligned} \end{equation} $$

Therefore, the position of the centre of mass of the rod can be given by, $${x_{COM}} = \frac{{\int {xdm} }}{{\int {dm} }} = \frac{{\int {x(a + bx)dx} }}{{\int {(a + bx)dx} }}$$

Integrating the above equation from end $O$ i.e. $x=0$ to end $A$ i.e. $x=L$

$$\begin{equation} \begin{aligned} {x_{COM}} = \frac{{\int\limits_0^L {x(a + bx)dx} }}{{\int\limits_0^L {(a + bx)dx} }} \\ {x_{COM}} = \frac{{\left[ {\frac{{a{x^2}}}{2} + \frac{{b{x^3}}}{3}} \right]_0^L}}{{\left[ {ax + \frac{{b{x^2}}}{2}} \right]_0^L}} \\ {x_{COM}} = \frac{{3aL + 2b{L^2}}}{{6a + 3bL}} \\\end{aligned} \end{equation} $$

So, the position of the centre of mass of the above rod is $\left( {\frac{{3aL + 2b{L^2}}}{{6a + 3bL}},0} \right)$



Question 6. Find the position of the centre of mass of a thin uniform disc of radius $R$ from which a small concentric disc of radius $r$ is removed as shown in the figure.



Solution: Consider a uniform semicircular disc of mass M as shown in the figure.


Area of the semicircular ring $(A) = \frac{{\pi \left( {{R^2} - {r^2}} \right)}}{2}\quad ...(i)$


Mass per unit area $\left( {{\lambda _A}} \right) = \frac{{2M}}{{\pi \left( {{R^2} - {r^2}} \right)}}\quad ...(ii)$


Consider a ring of radius $s$ and infinitesimal small thickness $ds$ having its centre at the origin and mass $dm$ at point $P$ on the disc.



Co-ordinate of the centre of mass of the ring passing through point $P$ is $\left( {0,\frac{{2s}}{\pi }} \right)$.


So, the position vector of the centre of mass $(COM)$ of ring passing through point $P$ is ${\overrightarrow r _{CO{M_P}}} = \frac{{2s}}{\pi }\widehat j$


Area of the ring is, $$dA = \left( {\pi s} \right)ds\quad ...(iii)$$ Also, $$\begin{equation} \begin{aligned} dm = {\lambda _A}dA \\ dm = {\lambda _A}\pi sds\quad ...(iv) \\\end{aligned} \end{equation} $$

Therefore, the centre of mass $(COM)$ of the semicircular disc is given by, $${\overrightarrow r _{COM}} = \frac{{\int {{{\overrightarrow r }_{CO{M_P}}}dm} }}{{\int {dm} }} = \frac{{\int {\frac{{2s}}{\pi }} dm}}{{\int {dm} }}\widehat j\quad ...(v)$$

From equation $(iv)$ & $(v)$ we get, $$\begin{equation} \begin{aligned} {\overrightarrow r _{COM}} = \frac{{\int {\frac{{2s}}{\pi }} {\lambda _A}\pi sds}}{{\int {{\lambda _A}\pi sds} }}\widehat j \\ {\overrightarrow r _{COM}} = \frac{2}{\pi }\frac{{\int {{s^2}ds} }}{{\int {sds} }}\widehat j \\\end{aligned} \end{equation} $$

Integrating for the semicircular disc from point $O$ to $A$,


At point $A$, $s=r$ & at point $B$, $s=R$, so the limit becomes, $$\begin{equation} \begin{aligned} {\overrightarrow r _{COM}} = \frac{2}{\pi }\frac{{\int\limits_r^R {{s^2}ds} }}{{\int\limits_r^R {sds} }}\widehat j \\ {\overrightarrow r _{COM}} = \frac{2}{\pi }\frac{{\left[ {\frac{{{s^3}}}{3}} \right]_r^R}}{{\left[ {\frac{{{s^2}}}{2}} \right]_r^R}}\widehat j \\ {\overrightarrow r _{COM}} = \frac{{4\left( {{R^3} - {r^3}} \right)}}{{3\pi \left( {{R^2} - {r^2}} \right)}}\widehat j \\\end{aligned} \end{equation} $$

So, the centre of mass $(COM)$ of the disc as shown in the figure is $\left( {0,\frac{{4\left( {{R^3} - {r^3}} \right)}}{{3\pi \left( {{R^2} - {r^2}} \right)}}} \right)$


Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD