Physics > Centre of Mass and Conservation of Linear Momentum > 2.0 Position of centre of mass of continuous bodies

  Centre of Mass and Conservation of Linear Momentum
    1.0 Introduction
    2.0 Position of centre of mass of continuous bodies
    3.0 Centre of mass of the remaining portion
    4.0 Laws of conservation of linear momentum
    5.0 Variable Mass
    6.0 Impulse
    7.0 Collision
    8.0 Types of collision
    9.0 Newton's law of restitution
    10.0 Head on elastic and inelastic collision
    11.0 Collision in two dimension
    12.0 Oblique collision

2.8 Circular Plate

Consider a thin circular plate of mass $m$ and radius $r$. Let the centre $O$ of the circular plate be the origin of the cartesian co-ordinate.


Mass per unit area $\left( {{\lambda _A}} \right) = \frac{{{\text{Total mass}}}}{{{\text{Total area}}}} = \frac{M}{{\pi {R^2}}}\quad ...(i)$


Let us now find the position of the centre of mass about the $y$ axis.


Area of the small green rectangular strip $(dA)=2r(dy)$


As, $$r = R\cos \theta \quad ,\quad dy = Rd\theta $$ So, $$dA = 2R\cos \theta (Rd\theta ) = 2{R^2}\cos \theta d\theta $$

Therefore, $$dm = {\lambda _A}\left( {dA} \right)$$ or $$dm = {\lambda _A}2{R^2}\cos \theta d\theta \quad ...(ii)$$

Centre of mass $(COM)$ of the small rectangular strip is at point $P$ i.e. at a distance $y = R\sin \theta $ from the $x$ axis.


Note: The small section at point $P$ is infinitesimally small, so, the centre of mass of that section is assumed to be at point $P$ only.


So, for the centre of mass $(COM)$ of the rectangular plate along the $y$ axis is given by, $$\begin{equation} \begin{aligned} {\overrightarrow r _{CO{M_y}}} = \frac{{\int {{{\overrightarrow r }_{{P_y}}}dm} }}{{\int {dm} }} = \frac{{\int {R\sin \theta } dm}}{{\int {dm} }}\widehat j \\ {\overrightarrow r _{CO{M_y}}} = \frac{{\int {y{\lambda _A}2{R^2}\cos \theta d\theta } }}{{\int {{\lambda _A}2{R^2}\cos \theta d\theta } }}\widehat j \\\end{aligned} \end{equation} $$ or $${\overrightarrow r _{CO{M_y}}} = \frac{{\int {R\sin \theta \cos \theta d\theta } }}{{\int {\cos \theta d\theta } }}\widehat j$$

Integrating for the circular plate from point $B$ to $A$,


At point $B$, $\theta = - \frac{\pi }{2}$ & at point $A$, $\theta = + \frac{\pi }{2}$. So, the limit becomes, $$\begin{equation} \begin{aligned} {\overrightarrow r _{CO{M_y}}} = \frac{{\int\limits_{ - \frac{\pi }{2}}^{ + \frac{\pi }{2}} {R\sin \theta \cos \theta d\theta } }}{{\int\limits_{ - \frac{\pi }{2}}^{ + \frac{\pi }{2}} {\cos \theta d\theta } }} \\ {\overrightarrow r _{CO{M_y}}} = - \frac{{R\left[ {\cos \left( {2\theta } \right)} \right]_{ - \pi /2}^{\pi /2}}}{{2\left[ {\sin \theta } \right]_{ - \pi /2}^{\pi /2}}}\widehat j \\ {\overrightarrow r _{CO{M_y}}} = 0\widehat j \\\end{aligned} \end{equation} $$ Similarly, $${\overrightarrow r _{CO{M_x}}} = 0\widehat i$$


Since, the circular plate is a symmetric body so its centre of mass lies at its centre.


So, the position of the centre of mass $(COM)$ for the thin circular plate is $(0,0)$.

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD