Physics > Centre of Mass and Conservation of Linear Momentum > 2.0 Position of centre of mass of continuous bodies

  Centre of Mass and Conservation of Linear Momentum
    1.0 Introduction
    2.0 Position of centre of mass of continuous bodies
    3.0 Centre of mass of the remaining portion
    4.0 Laws of conservation of linear momentum
    5.0 Variable Mass
    6.0 Impulse
    7.0 Collision
    8.0 Types of collision
    9.0 Newton's law of restitution
    10.0 Head on elastic and inelastic collision
    11.0 Collision in two dimension
    12.0 Oblique collision

2.5 Hemispherical Shell

1.2.5 Hemispherical shell


Consider a uniform hemispherical shell of radius $R$ and mass $M$, whose centre is at the origin of a cartesian co-ordinate (for simplicity).


Area of the hemispherical shell $(A) = 2\pi {R^2}\quad ...(i)$


Mass per unit area $\left( {{\lambda _A}} \right) = \frac{M}{{2\pi {R^2}}}\quad ...(ii)$


Consider an infinitesimal small element in the shape of a circular ring of mass $dm$, radius $r$ and infinitesimal small thickness $dx$.


Point $P$ is the centre of the infinitesimal small circular ring.


Centre of mass of the circular ring is at point $P$ i.e. $\left( {0,R\sin \theta } \right)$.


So, the position vector of the centre of mass $(COM)$ of point $P$ is ${\overrightarrow r _P} = R\sin \theta \widehat j$


Note: The thickness of the ring at point $P$ is infinitesimally small, so its centre of mass is assumed to be at point $P$ only


Area of the ring, $$dA = \left( {2\pi r} \right)dx$$ As, $$\begin{equation} \begin{aligned} dx = Rd\theta \quad ,\quad r = R\cos \theta \\ dA = \left( {2\pi R\cos \theta } \right)d\theta = 2\pi {R^2}\cos \theta d\theta \quad ...(iii) \\\end{aligned} \end{equation} $$ Also, $$\begin{equation} \begin{aligned} dm = {\lambda _A}dA \\ dm = {\lambda _A}2\pi {R^2}\cos \theta d\theta \quad ...(iv) \\\end{aligned} \end{equation} $$

Therefore, the centre of mass $(COM)$ of the hemispherical shell is given by, $${\overrightarrow r _{COM}} = \frac{{\int {{{\overrightarrow r }_P}dm} }}{{\int {dm} }} = \frac{{\int {R\sin \theta dm} }}{{\int {dm} }}\widehat j\quad ...(v)$$

From equation $(iv)$ & $(v)$ we get, $$\begin{equation} \begin{aligned} {\overrightarrow r _{COM}} = \frac{{\int {R\sin \theta {\lambda _A}2\pi {R^2}\cos \theta d\theta } }}{{\int {{\lambda _A}2\pi {R^2}\cos \theta d\theta } }}\widehat j \\ {\overrightarrow r _{COM}} = \frac{{\int {R\sin \theta \cos \theta d\theta } }}{{\int {\cos \theta d\theta } }}\widehat j\quad ...(vi) \\\end{aligned} \end{equation} $$

Integrating the hemispherical shell from point $B$ to $A$,


At point $B$, $\theta = 0$ & at point $A$, $\theta = \frac{\pi }{2}$, so the limit becomes, $$\begin{equation} \begin{aligned} {\overrightarrow r _{COM}} = \frac{{\int\limits_0^{\frac{\pi }{2}} {R\sin \theta \cos \theta d\theta } }}{{\int\limits_0^{\frac{\pi }{2}} {\cos \theta d\theta } }}\widehat j \\ {\overrightarrow r _{COM}} = \frac{R}{2}\widehat j \\\end{aligned} \end{equation} $$

So, the centre of mass $(COM)$ of the uniform hemispherical shell is $\left( {0,\frac{R}{2}} \right)$.

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD