Physics > Centre of Mass and Conservation of Linear Momentum > 2.0 Position of centre of mass of continuous bodies

  Centre of Mass and Conservation of Linear Momentum
    1.0 Introduction
    2.0 Position of centre of mass of continuous bodies
    3.0 Centre of mass of the remaining portion
    4.0 Laws of conservation of linear momentum
    5.0 Variable Mass
    6.0 Impulse
    7.0 Collision
    8.0 Types of collision
    9.0 Newton's law of restitution
    10.0 Head on elastic and inelastic collision
    11.0 Collision in two dimension
    12.0 Oblique collision

2.2 Semicircular ring

Consider a uniform semicircular ring of radius $R$ and mass $M$, whose centre is at the origin of a cartesian co-ordinate (for simplicity).


Length of the semicircular ring $(L) = \pi R\quad ...(i)$


Mass per unit length $\left( {{\lambda _L}} \right) = \frac{M}{{\pi R}}\quad ...(ii)$


Consider an infinitesimal small mass $dm$ at point $P$ on the ring.


Co-ordinate of point $P$ is $(R\sin \theta ,\;R\cos \theta )$


So, the position vector of the centre of mass $(COM)$ of point $P$ is,


Note: The small section at point $P$ is infinitesimally small, so, the centre of mass of that section is assumed to be at point $P$ only.

$${\overrightarrow r _P} = R\sin \theta \widehat i + R\cos \theta \widehat j\quad ...(iii)$$ Also, $$\begin{equation} \begin{aligned} dm = {\lambda _L}.\;dx \\ dm = {\lambda _L}Rd\theta \quad ...(iv) \\\end{aligned} \end{equation} $$

Therefore, the centre of mass $(COM)$ of the semicircular ring is given by,

$${\overrightarrow r _{COM}} = \frac{{\int {{{\overrightarrow r }_P}dm} }}{{\int {dm} }} = \frac{{\int {\left( {R\sin \theta \widehat i + R\cos \theta \widehat j} \right)dm} }}{{\int {dm} }}\quad ...(v)$$ From equation $(iv)$ & $(v)$ we get, $$\begin{equation} \begin{aligned} {\overrightarrow r _{COM}} = \frac{{\int {\left( {R\sin \theta \widehat i + R\cos \theta \widehat j} \right)} {\lambda _L}Rd\theta }}{{\int {{\lambda _L}Rd\theta } }} \\ {\overrightarrow r _{COM}} = \frac{{\int {\left( {R\sin \theta \widehat i + R\cos \theta \widehat j} \right)} d\theta }}{{\int {d\theta } }} \\\end{aligned} \end{equation} $$

Integrating for the semicircular ring from point $C$ to $A$ along point $B$,


At point $C$, $\theta = 0$ and at point $A$, $\theta = \pi $, so the limit becomes, $$\begin{equation} \begin{aligned} {\overrightarrow r _{COM}} = \frac{{\int\limits_0^\pi {\left( {R\sin \theta \widehat i + R\cos \theta \widehat j} \right)d\theta } }}{{\int\limits_0^\pi {d\theta } }} \\ {\overrightarrow r _{COM}} = \frac{{R\left[ { - \cos \theta \widehat i + \sin \theta \widehat j} \right]_0^\pi }}{{\left[ \theta \right]_0^\pi }} \\ {\overrightarrow r _{COM}} = \frac{{2R}}{\pi }\widehat j \\\end{aligned} \end{equation} $$

So, the centre of mass $(COM)$ of the uniform semicircular ring is $\left( {0,\frac{{2R}}{\pi }} \right)$


Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD