Physics > Motion in One Dimension > 6.0 Analysis of motion through graph

  Motion in One Dimension
    1.0 Introduction
    2.0 Kinematic variables
    3.0 Motion in one dimension
    4.0 Derivation of the kinematics equation
    5.0 Vertical motion under gravity
    6.0 Analysis of motion through graph
    7.0 Relative motion
    8.0 Simultaneous motion of two bodies
    9.0 River boat problem
    10.0 Aircraft-wind problem
    11.0 Rain problem

6.4 Solved examples

Question: The velocity-time graph of a linear motion is as shown in the figure. Find the distance traveled and displacement of the particle from the origin after $8\ s$.

Solution:


The vector sum of area under the velocity-time graph gives displacement $(d)$.
$$d = ar\left( {OABC} \right) + ar\left( {CDEF} \right)$$
$$d = \left[ {\left( {\frac{1}{2} \times 1 \times 4} \right) + \left( {2 \times 4} \right) + \left( {\frac{1}{2} \times 1 \times 4} \right)} \right] + \left[ {\left( {\frac{1}{2} \times 1 \times - 2} \right) + \left( {2 \times - 3} \right) + \left( {\frac{1}{2} \times 1 \times - 2} \right)} \right]$$$$d = \left[ {2 + 8 + 2} \right] + \left[ { - 1 - 6 - 1} \right]$$$$d = 12 - 8$$$$d = 4\,m$$


The modulus sum of area under the graph gives us distance $(D)$.

$$d = \left| {ar\left( {OABC} \right)} \right| + \left| {ar\left( {CDEF} \right)} \right|$$$$d = \left[ {\left( {\frac{1}{2} \times 1 \times 4} \right) + \left( {2 \times 4} \right) + \left( {\frac{1}{2} \times 1 \times 4} \right)} \right] + \left| {\left[ {\left( {\frac{1}{2} \times 1 \times - 2} \right) + \left( {2 \times - 3} \right) + \left( {\frac{1}{2} \times 1 \times - 2} \right)} \right]} \right|$$$$d = \left[ {2 + 8 + 2} \right] + \left| {\left[ { - 1 - 6 - 1} \right]} \right|$$$$d = 12 + 8$$$$d = 20\,m$$


Question: The acceleration displacement graph of a particle moving in a straight line is shown in the figure. Initial velocity of the particle is zero. Find the velocity of the particle when displacement of the particle is $S=12\ m$.

Solution:

The area under the graph will give us product of acceleration and displacement i.e. $\overrightarrow a .\,\overrightarrow s $

So, $$\overrightarrow a .\,\overrightarrow s = {A_1} + {A_2} + {A_3} + {A_4} + {A_5}$$

${A_1} = \frac{1}{2} \times 2 \times 2 = 2\,units$
${A_2} = 2 \times 6 = 12\,units$
${A_3} = 2 \times 2 = 4\,units$
${A_4} = \frac{1}{2} \times 2 \times 2 = 2\,units$
${A_5} = \frac{1}{2} \times 2 \times 4 = 4\,units$

Therefore, $$\overrightarrow a .\,\overrightarrow s = 2 + 12 + 4 + 2 + 4$$$$\overrightarrow a .\,\overrightarrow s = 24\,units$$

We can write all the information below,

$\overrightarrow u = 0$
$\overrightarrow v = ?$
$\overrightarrow a .\,\overrightarrow s = 24\,units$

We can write the kinematic equation as,
$${v^2} = {u^2} + 2\overrightarrow a .\,\overrightarrow s $$$${v^2} = 0 + 2 \times 24$$$${v^2} = 48$$$$v = 4\sqrt 3 m/s$$


Question: If the velocity $v$ of a particle moving along a straight line decreases lineraly with its displacement $s$ as shown in the figure. Find the acceleration of the particle at $s=15\ m$.


Solution: The equation of the slope is a straight line. So, it should be in the form of $y=mx+c$


Slope is given by,
$$m = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \frac{{10 - 0}}{{0 - 30}} = - \frac{1}{3}$$
$y$ intercept is,
$$c = 10$$
So, the equation becomes, $$y = - \frac{x}{3} + 10$$or$$v = - \frac{s}{3} + 10$$
When displacement is $s=15\ m$, then velocity is $v=5\ m/s$

Also, can be written as,
$$m = \frac{{dv}}{{ds}}$$$$ - \frac{1}{3} = \frac{{dv}}{{dt}} \times \frac{{dt}}{{ds}}$$$$ - \frac{1}{3} = a\left( {\frac{1}{v}} \right)$$$$a = - \frac{v}{3}$$So, acceleration at $s=15\ m$ is,
$$a = - \frac{5}{3}\,m/{s^2}$$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD