Physics > Motion in One Dimension > 4.0 Derivation of the kinematics equation

  Motion in One Dimension
    1.0 Introduction
    2.0 Kinematic variables
    3.0 Motion in one dimension
    4.0 Derivation of the kinematics equation
    5.0 Vertical motion under gravity
    6.0 Analysis of motion through graph
    7.0 Relative motion
    8.0 Simultaneous motion of two bodies
    9.0 River boat problem
    10.0 Aircraft-wind problem
    11.0 Rain problem

4.1 Graphical method

Consider a body having initial velocity $u$ at time $t=0$ and moves with constant acceleration $a$. It moves with velocity $v$ at any time $t$.


For $\overrightarrow v = \overrightarrow u + \overrightarrow a t$,

The slope of the graph gives us acceleration.
$$\tan \theta = \frac{{v - u}}{{t - 0}}$$$$a = \frac{{v - u}}{t}$$$$v = u + at$$ or $$\overrightarrow v = \overrightarrow u + \overrightarrow a t \quad ...(i)$$


For $\overrightarrow s = \overrightarrow u t + \frac{1}{2}\overrightarrow a {t^2}$,

Area under the velocity-time $(v-t)$ graph gives us displacement.

Area $=$ Area of $\Delta ABC$ + Area of $\Delta OACD$$$s = ut + \frac{1}{2}\left( {v - u} \right)t$$

As we know, $$v - u = at$$ So, $$s = ut + \frac{1}{2}a{t^2}$$ or $$\overrightarrow v = \overrightarrow u + \overrightarrow a t \quad ...(ii)$$


For ${v^2} = {u^2} + 2\overrightarrow a .\overrightarrow s $,

Eliminating $t$ from equation $(i)$ in equation $(ii)$ we get,

$$\overrightarrow s = \overrightarrow u \left[ {\frac{{\overrightarrow v - \overrightarrow u }}{a}} \right] + \frac{1}{2}\overrightarrow a {\left[ {\frac{{\overrightarrow v - \overrightarrow u }}{a}} \right]^2}$$$$\overrightarrow s = \overrightarrow u \left[ {\frac{{\overrightarrow v - \overrightarrow u }}{a}} \right] + \frac{1}{2}\overrightarrow a \left[ {\frac{{{v^2} + {u^2} - 2\overrightarrow v .\,\overrightarrow u }}{{{a^2}}}} \right]$$$$\overrightarrow s = \overrightarrow u \left[ {\frac{{\overrightarrow v - \overrightarrow u }}{a}} \right] + \left[ {\frac{{{v^2} + {u^2} - 2\overrightarrow v .\,\overrightarrow u }}{{2\overrightarrow a }}} \right]$$$$\overrightarrow s = \left[ {\frac{{2\overrightarrow u .\,\overrightarrow v - 2{u^2} + {v^2} + {u^2} - 2\overrightarrow v .\,\overrightarrow u }}{{2\overrightarrow a }}} \right]$$$$2\overrightarrow a .\overrightarrow s = {v^2} - {u^2}$$$${v^2} = {u^2} + 2\overrightarrow a .\overrightarrow s $$


For ${\vec s_{{n^{th}}}} = \vec u + \frac{1}{2}\vec a\left( {2n - 1} \right)$

Displacement in $n^{th}$ second means the displacement of a body between $(n-1)$ to $n$ seconds.


$${{\vec s}_n} = \vec un + \frac{1}{2}\vec a{n^2}$$$${{\vec s}_{n - 1}} = \vec u\left( {n - 1} \right) + \frac{1}{2}\vec a{\left( {n - 1} \right)^2}$$ Then, $${{\vec s}_n} - {{\vec s}_{n - 1}} = \vec u\left( {n - n + 1} \right) + \frac{1}{2}\vec a\left[ {{n^2} - {{\left( {n - 1} \right)}^2}} \right]$$$${{\vec s}_{{n^{th}}}} = \vec u + \frac{1}{2}\overrightarrow a \left[ {{n^2} - {n^2} - 1 + 2n} \right]$$$${{\vec s}_{{n^{th}}}} = \vec u + \frac{1}{2}\overrightarrow a \left[ {2n - 1} \right]$$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD