Physics > Refraction of Light > 3.0 Apparent shift of an object

  Refraction of Light
    1.0 Introduction
    2.0 Laws of refraction
    3.0 Apparent shift of an object
    4.0 Thin lenses
    5.0 Lens makers formula & Other Functions of lens.
    6.0 Total internal reflection
    7.0 Refraction through prism
    8.0 Scattering of light
    9.0 Optical instruments

3.2 Lateral Magnification


From Snell's law we can write,
$${\mu _1}\sin i = {\mu _2}\sin r$$
As angles $i$ and $r$ are very small. So,
$${\mu _1}i = {\mu _2}r\quad ...(i)$$
Also,
\[\left. \begin{gathered} \tan i = \frac{{OA}}{{MO}}\quad \& \quad i = \frac{{OA}}{{MO}} \hspace{1em} \\ \tan r = \frac{{IB}}{{MI}}\quad \& \quad r = \frac{{IB}}{{MI}} \hspace{1em} \\ \end{gathered} \right\}\quad ...(ii)\]
From equation $(i)$ and $(ii)$ we get,
$${\mu _1}\left( {\frac{{OA}}{{MO}}} \right) = {\mu _2}\left( {\frac{{IB}}{{MI}}} \right)$$
As $\left( {OA \to + h,\;MO \to - u,\;IB \to - {h_2}\;{\text{and }}MI \to + v} \right)$. So,
$$\begin{equation} \begin{aligned} {\mu _1}\left( {\frac{{{h_1}}}{{ - u}}} \right) = {\mu _2}\left( {\frac{{ - {h_2}}}{v}} \right) \\ \frac{{{h_2}}}{{{h_1}}} = \left( {\frac{v}{u}} \right)\left( {\frac{{{\mu _1}}}{{{\mu _2}}}} \right) \\\end{aligned} \end{equation} $$
$$m = \left( {\frac{{{\mu _1}}}{{{\mu _2}}}} \right)\left( {\frac{v}{u}} \right)$$

The above equation is used to calculate lateral magnification $(m)$ due to refraction from a spherical surface.
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD