Physics > Refraction of Light > 7.0 Refraction through prism

  Refraction of Light
    1.0 Introduction
    2.0 Laws of refraction
    3.0 Apparent shift of an object
    4.0 Thin lenses
    5.0 Lens makers formula & Other Functions of lens.
    6.0 Total internal reflection
    7.0 Refraction through prism
    8.0 Scattering of light
    9.0 Optical instruments

7.1 Dispersive power
The dispersive power of a material is defined as the ratio of angular dispersion to the average deviation when a white beam of light is passed through it.

It is denoted by $\omega $.

Mathematically it is given by,
$$\begin{equation} \begin{aligned} \omega = \frac{{{\text{angular dispersion}}}}{{{\text{average deviation}}}} \\ \omega = \frac{{\left( {{\mu _V} - {\mu _R}} \right)A}}{{\left( {\mu - 1} \right)A}} \\ \omega = \frac{{\left( {{\mu _V} - {\mu _R}} \right)}}{{\left( {{\mu _y} - 1} \right)}} \\\end{aligned} \end{equation} $$

Two cases are possible.

1. Dispersion without average deviation
2. Average deviation without dispersion

Suppose we combine two prisms of refracting angles $A$ & $A'$ and dispersive power $\omega $ and $\omega '$ respectively in such a way that their refracting angle are reversed with respect to each other as shown in the figure.


The deviation produced by the prism is given by,
$$\begin{equation} \begin{aligned} {\delta _1} = + \left( {\mu - 1} \right)A \\ {\delta _2} = - \left( {\mu - 1} \right)A \\\end{aligned} \end{equation} $$
Note: $-ve$ sign shows that the deviation are in opposite direction.

Net deviation is given by,
$$\begin{equation} \begin{aligned} \delta = {\delta _1} + {\delta _2} \\ \delta = \left( {\mu - 1} \right)A - \left( {\mu ' - 1} \right)A'\quad ...(i) \\\end{aligned} \end{equation} $$

Similarly, average deviation produced by combination if white light is passed,
$${\delta _y} = \left( {{\mu _y} - 1} \right)A - \left( {\mu {'_y} - 1} \right)A'\quad ...(ii)$$

7.1.1 Dispersion without average deviation

$${\delta _y} = 0$$
or
$$\begin{equation} \begin{aligned} \left( {{\mu _y} - 1} \right)A - \left( {\mu {'_y} - 1} \right)A' = 0 \\ \left( {\frac{{{\mu _y} - 1}}{{\mu {'_y} - 1}}} \right) = \frac{A}{{A'}} \\ A' = \left( {\frac{{{\mu _y} - 1}}{{\mu {'_y} - 1}}} \right)A\quad ...(iii) \\\end{aligned} \end{equation} $$

Dispersion is given by,
$$\begin{equation} \begin{aligned} {\delta _V} - {\delta _R} = \left[ {\left( {{\mu _V} - 1} \right)A - \left( {\mu {'_V} - 1} \right)A'} \right] - \left[ {\left( {{\mu _R} - 1} \right)A - \left( {{\mu _R} - 1} \right)A'} \right] \\ {\delta _V} - {\delta _R} = \left( {{\mu _V} - {\mu _R}} \right)A - \left( {{\mu _V} - {\mu _R}} \right)A'\quad ...(iv) \\\end{aligned} \end{equation} $$
From equation $(iii)$ and $(iv)$ we get,
$$\begin{equation} \begin{aligned} {\delta _V} - {\delta _R} = \left( {{\mu _V} - {\mu _R}} \right)A - \left( {{\mu _y} - 1} \right)\left( {\frac{{\mu {'_V} - \mu {'_R}}}{{\mu {'_y} - 1}}} \right)A \\ {\delta _V} - {\delta _R} = \left( {{\mu _y} - 1} \right)A\left[ {\left( {\frac{{{\mu _V} - {\mu _R}}}{{{\mu _y} - 1}}} \right) - \left( {\frac{{\mu {'_V} - \mu {'_R}}}{{\mu {'_y} - 1}}} \right)} \right] \\\end{aligned} \end{equation} $$
$${\delta _V} - {\delta _R} = \left( {{\mu _y} - 1} \right)A\left( {\omega - \omega '} \right)$$

7.1.2 Average deviation without dispersion

Dispersion is given by,
$${\delta _V} - {\delta _R} = \left( {{\mu _V} - {\mu _R}} \right)A - \left( {\mu {'_V} - \mu {'_R}} \right)A$$
For without dispersion,
$$\begin{equation} \begin{aligned} {\delta _V} - {\delta _R} = 0 \\ \left( {{\mu _V} - {\mu _R}} \right)A - \left( {\mu {'_V} - \mu {'_R}} \right)A' = 0 \\\end{aligned} \end{equation} $$
or
$$A' = \left( {\frac{{{\mu _V} - {\mu _R}}}{{\mu {'_V} - \mu {'_R}}}} \right)A\quad ...(v)$$
From equation $(ii)$ and $(v)$ we get,
$${\delta _y} = \left( {{\mu _y} - 1} \right)A\left[ {1 - \frac{{\left( {\mu {'_y} - 1} \right)\left( {{\mu _V} - {\mu _R}} \right)}}{{\left( {\mu {'_V} - \mu {'_R}} \right)\left( {{\mu _y} - 1} \right)}}} \right]$$
$${\delta _y} = \left( {{\mu _y} - 1} \right)A\left[ {1 - \frac{\omega }{{\omega '}}} \right]$$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD