Physics > Refraction of Light > 3.0 Apparent shift of an object

  Refraction of Light
    1.0 Introduction
    2.0 Laws of refraction
    3.0 Apparent shift of an object
    4.0 Thin lenses
    5.0 Lens makers formula & Other Functions of lens.
    6.0 Total internal reflection
    7.0 Refraction through prism
    8.0 Scattering of light
    9.0 Optical instruments

3.1 Shift due to a glass slab
There are two types of shift due to a glass slab.

1. Normal shift
2. Lateral shift

3.1.1 Normal shift

$OA = x$

${I_1}A = \mu x$ (Apparent image due to refraction from the 1st surface)

$$\begin{equation} \begin{aligned} {I_1}B = {I_1}A + AB \\ {I_1}B = \mu x + t \\\end{aligned} \end{equation} $$
$IB = \frac{{{I_1}B}}{\mu }$ (Apparent image due to reflection from the 2nd surface).

$$\begin{equation} \begin{aligned} IB = \left( {\frac{{\mu x + t}}{\mu }} \right) \\ IB = \left( {x + \frac{t}{\mu }} \right) \\\end{aligned} \end{equation} $$
Shift $(OI)$ is given by,
$$\begin{equation} \begin{aligned} OI = (OA + AB) - (BI) \\ OI = (x + t) - \left( {x + \frac{t}{\mu }} \right) \\ OI = t\left[ {1 - \frac{t}{\mu }} \right] \\\end{aligned} \end{equation} $$

3.1.2 Lateral shift


When the medium is same on both sides of a glass slab, then the deviation of the emergent ray is zero. That is the emergent ray is parallel to the incident ray but it does suffer lateral shift or lateral displacement with respect to the incident ray as shown in the figure.

Mathermatically lateral shift is given by, $$d = \left( {1 - \frac{1}{\mu }} \right)ti$$

Derivation of lateral shift

$$AB\cos r = AC$$ or $$AB = \frac{t}{{\cos r}}$$
$$d = AB\sin (i - r)$$ So, $$\begin{equation} \begin{aligned} d = \frac{t}{{\cos r}}\left[ {\sin i\cos r - \cos i\sin r} \right] \\ d = t\left[ {\sin i - \cos i\tan r} \right]\quad ...(i) \\\end{aligned} \end{equation} $$
From Snell's law,
$$\frac{{\sin i}}{{\sin r}} = \mu $$ or $$\sin r = \frac{{\sin i}}{\mu }$$
Therefore, $$\tan r = \frac{{\sin r}}{{\cos r}} = \frac{{\sin r}}{{\sqrt {1 - {{\sin }^2}r} }}$$
$$\tan r = \frac{{\frac{{\sin i}}{\mu }}}{{\sqrt {1 - {{\left( {\frac{{\sin i}}{\mu }} \right)}^2}} }} = \frac{{\sin i}}{{\sqrt {{\mu ^2} - {{\sin }^2}i} }}\quad ...(i)$$
From equation $(i)$ and $(ii)$ we get,
$$d = t\left[ {\sin i - \frac{{\sin i\cos i}}{{\sqrt {{\mu ^2} - {{\sin }^2}i} }}} \right]$$
$$d = \left[ {1 - \frac{{\cos i}}{{\sqrt {{\mu ^2} - {{\sin }^2}i} }}} \right]t\sin i$$

Note:

For $i \to 0$,
$$d = \mathop {\lim }\limits_{i \to 0} \left[ {1 - \frac{{\cos i}}{{\sqrt {{\mu ^2} - {{\sin }^2}i} }}} \right]t\sin i$$
$$d = \left[ {1 - \frac{1}{\mu }} \right]ti$$
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD