Physics > Basics of Rotational Motion > 7.0 Moment of inertia of uniform continious rigid bodies

  Basics of Rotational Motion
    1.0 Rigid body
    2.0 Motion of rigid body
    3.0 Kinematics of a plane motion
    4.0 Moment of inertia
    5.0 Radius of gyration $(K)$
    6.0 Theorems of moment of inertia
    7.0 Moment of inertia of uniform continious rigid bodies

7.5 Solid cylinder
Consider a uniform solid cylinder of mass $M$, length $L$ and radius $R$.

Volume of the cylinder $(V) = \pi {R^2}L$

Mass per unit volume $({\lambda _V}) = \frac{M}{{\pi {R^2}L}}\quad ...(i)$

Consider an infinitesimally small section in shape of a ring of mass $dm$, radius $r$ and thickness $dr$ as shown in the figure.

Area of an infinitesimally small section of ring, $\left( {dA} \right) = 2\pi rdr$

Volume of an infinitesimally small section of a ring along the cylinder, $\left( {dV} \right) = L(dA)$ $$dV = \left( {2\pi rdr} \right)L\quad ...(ii)$$
Mass of the infinitesimally small section, $(dm) = {\lambda _V}dV$ $$\begin{equation} \begin{aligned} dm = \left( {\frac{M}{{\pi {R^2}L}}} \right)(2\pi Lrdr) \\ dm = \frac{{2Mrdr}}{{{R^2}}}\quad ...(iii) \\\end{aligned} \end{equation} $$
So, moment of inertia of a ring of radius $r$ and mass $dm$ is given by, $$\int {d{I_z} = \int_m {{r^2}dm} \quad ...(iv)} $$
where,
$\int_m : $ Integrating over the entire mass
$r$: Perpendicular distance from an axis of rotation (Radius of the ring)
$dm$: mass of infinitesimally small section

From equation $(iii)$ & $(iv)$ we get, $$\begin{equation} \begin{aligned} \int {d{I_z} = \int_m {{r^2}\left( {\frac{{2Mrdr}}{{{R^2}}}} \right)} } \\ \int {d{I_z}} = \frac{{2M}}{{{R^2}}}\int_m {{r^3}dr} \\\end{aligned} \end{equation} $$
Integrating the above equation for the whole solid cylinder we get, $$\begin{equation} \begin{aligned} \int\limits_0^{{I_z}} {d{I_z}} = \frac{{2M}}{{{R^2}}}\int\limits_0^R {{r^3}dr} \\ \left[ {{I_z}} \right]_0^{{I_z}} = \frac{{2M}}{{{R^2}}}\left[ {\frac{{{r^4}}}{4}} \right]_0^R \\ \left( {{I_z} - 0} \right) = \frac{{2M}}{{{R^2}}}\left( {\frac{{{R^4}}}{4} - 0} \right) \\ {I_z} = \frac{{M{R^2}}}{2}\quad ...(v) \\\end{aligned} \end{equation} $$
So, moment of inertia along the axis of the solid cylinder is, ${I_z} = \frac{{M{R^2}}}{2}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} I = M{K^2} \\ \frac{{M{R^2}}}{2} = M{K^2} \\ K = \frac{R}{{\sqrt 2 }} \\\end{aligned} \end{equation} $$
So, radius of gyration along the axis of the solid cylinder is, $K = \frac{R}{{\sqrt 2 }}$

For moment of inertia about an axis passing through its centre and perpendicular to its own axis

Consider an infinitesimally small section in the shape of a disc of mass $dM$, radius $R$ and thickness $dy$ at a distance $y$ from the axis of rotation as shown in the figure.

Area of the circular disc $(A) = \pi {R^2}$

Volume of the infinitesimally small section, $(dV)=Ady$ $$dV = \pi {R^2}dy\quad ...(vi)$$
Mass of the infinitesimally small section of mass $dM = {\lambda _V}dV$ $$\begin{equation} \begin{aligned} dM = \left( {\frac{M}{{\pi {R^2}L}}} \right)\left( {\pi {R^2}dy} \right) \\ dM = \frac{{Mdy}}{L}\quad ...(vii) \\\end{aligned} \end{equation} $$
Moment of inertia of a disc of radius $R$ and mass $dM$ about its diameter passing through centre of mass $(COM)$ is given by, $$d{I_{COM}} = \frac{{\left( {dM} \right){R^2}}}{4}$$
So, moment of inertia of a cylinder is given by,

From parallel axis theorem, $$\begin{equation} \begin{aligned} d{I_x} = d{I_{COM}} + {y^2}dM \\ d{I_x} = \frac{{{R^2}dM}}{4} + {y^2}dM \\ d{I_x} = \left( {\frac{{{R^2}}}{4} + {y^2}} \right)dM\quad ...(viii) \\\end{aligned} \end{equation} $$
From equation $(vii)$ & $(viii)$ we get, $$d{I_x} = \left( {\frac{{{R^2}}}{4} + {y^2}} \right)\left( {\frac{{Mdy}}{L}} \right)$$
Integrating the above equation for the whole solid cylinder we get, $$\begin{equation} \begin{aligned} \int\limits_0^{{I_x}} {d{I_x} = \int\limits_{ - \frac{L}{2}}^{\frac{L}{2}} {\left( {\frac{{{R^2}}}{4} + {y^2}} \right)\left( {\frac{{Mdy}}{L}} \right)} } \\ \left[ {{I_x}} \right]_0^{{I_x}} = \frac{M}{L}\int\limits_{ - \frac{L}{2}}^{\frac{L}{2}} {\left( {\frac{{{R^2}}}{4} + {y^2}} \right)} dy \\ \left( {{I_x} - 0} \right) = \frac{M}{L}\left[ {\frac{{{R^2}y}}{4} + \frac{{{y^3}}}{3}} \right]_{ - \frac{L}{2}}^{\frac{L}{2}} \\ {I_x} = \frac{M}{L}\left\{ {\left( {\frac{{{R^2}L}}{8} + \frac{{{L^3}}}{{24}}} \right) - \left( { - \frac{{{R^2}L}}{8} - \frac{{{L^3}}}{{24}}} \right)} \right\} \\ {I_x} = \frac{M}{L}\left( {\frac{{{R^2}L}}{4} + \frac{{{L^3}}}{{12}}} \right) \\ {I_x} = M\left( {\frac{{{R^2}}}{4} + \frac{{{L^2}}}{{12}}} \right) \\\end{aligned} \end{equation} $$
So, moment of inertia about an axis passing through its centre and perpendicular to its own axis is, ${I_x} = M\left( {\frac{{{R^2}}}{4} + \frac{{{L^2}}}{{12}}} \right)$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} I = M{K^2} \\ M\left( {\frac{{{R^2}}}{4} + \frac{{{L^2}}}{{12}}} \right) = M{K^2} \\ K = \sqrt {\left( {\frac{{{R^2}}}{4} + \frac{{{L^2}}}{{12}}} \right)} \\\end{aligned} \end{equation} $$
So, radius of gyration about an axis passing through its centre and perpendicular to its own axis is, $K = \sqrt {\left( {\frac{{{R^2}}}{4} + \frac{{{L^2}}}{{12}}} \right)} $

For moment of inertia along the axis which is tangent to the circular portion of the cylinder,

From parallel axis theorem, $$\begin{equation} \begin{aligned} {I_1} = {I_x} + M{\left( {\frac{L}{2}} \right)^2} \\ {I_1} = M\left( {\frac{{{R^2}}}{4} + \frac{{{L^2}}}{{12}}} \right) + \frac{{M{L^2}}}{4} \\ {I_1} = M\left( {\frac{{{R^2}}}{4} + \frac{{{L^2}}}{3}} \right) \\\end{aligned} \end{equation} $$
So, moment of inertia along the axis which is tangent to the circular portion of the cylinder is, ${I_1} = M\left( {\frac{{{R^2}}}{4} + \frac{{{L^2}}}{3}} \right)$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} I = M{K^2} \\ M\left( {\frac{{{R^2}}}{4} + \frac{{{L^2}}}{3}} \right) = M{K^2} \\ K = \sqrt {\left( {\frac{{{R^2}}}{4} + \frac{{{L^2}}}{3}} \right)} \\\end{aligned} \end{equation} $$
So, raidus of gyration along the axis which is tangent to the circular portion of the cylinder is, $K = \sqrt {\left( {\frac{{{R^2}}}{4} + \frac{{{L^2}}}{3}} \right)} $

For moment of inertia along the axis which is tangent to the curved portion of the cylinder

From parallel axis theorem, $$\begin{equation} \begin{aligned} I = {I_z} + M{R^2} \\ I = \frac{{M{R^2}}}{2} + M{R^2} \\ I = \frac{{3M{R^2}}}{2} \\\end{aligned} \end{equation} $$
So, moment of inertia along the axis which is tangent to the curved portion of the cylinder is, $I = \frac{{3M{R^2}}}{2}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} I = M{K^2} \\ \frac{{3M{R^2}}}{2} = M{K^2} \\ K = \sqrt {\frac{3}{2}} R \\\end{aligned} \end{equation} $$
So, radius of gyration along the axis which is tangent to the curved portion of the cylinder is, $K = \sqrt {\frac{3}{2}} R$


Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD