Physics > Basics of Rotational Motion > 7.0 Moment of inertia of uniform continious rigid bodies

  Basics of Rotational Motion
    1.0 Rigid body
    2.0 Motion of rigid body
    3.0 Kinematics of a plane motion
    4.0 Moment of inertia
    5.0 Radius of gyration $(K)$
    6.0 Theorems of moment of inertia
    7.0 Moment of inertia of uniform continious rigid bodies

7.7 Solid sphere
Consider a solid sphere of radius $R$ and mass $M$.

Volume of the solid sphere is, $(V) = \frac{4}{3}\pi {R^3}$

Mass per unit volume, $\left( {{\lambda _V}} \right) = \frac{M}{V} = \frac{{3M}}{{4\pi {R^3}}}$

For moment of inertia about its diameter

Consider an infinitesimally small section in the shape of a disc of radius $r$, thickness $dy$ and mass $dm$ at a distance $x$ from an axis of rotation.

Area of disc of radius $r$, $A = \pi {r^2}$

Volume of the infinitesimally small section of mass, $dV = \pi {r^2}dy$

Mass of an infinitesimally small section, $dm = {\lambda _V}dV$ $$\begin{equation} \begin{aligned} dm = \left( {\frac{{3M}}{{4\pi {R^3}}}} \right)\left( {\pi {r^2}dy} \right) \\ dm = \frac{{3M}}{{4{R^3}}}{r^2}dy\quad ...(i) \\\end{aligned} \end{equation} $$
Moment of inertia of an axis about the diameter of a disc of radius $r$ and mass $dm$ is, $$d{I_{COM}} = \frac{{\left( {dm} \right){r^2}}}{4}$$
So, the moment of inertia of a disc about the axis of rotation of a sphere is,

From parallel axis theorem, $$\begin{equation} \begin{aligned} d{I_x} = d{I_{COM}} + {y^2}dm \\ d{I_x} = \frac{{{r^2}dm}}{4} + {y^2}dm \\ d{I_x} = \left( {\frac{{{r^2}}}{4} + {y^2}} \right)dm\quad ...(ii) \\\end{aligned} \end{equation} $$
From equation $(i)$ & $(ii)$ we get, $$d{I_x} = \left( {\frac{{{r^2}}}{4} + {y^2}} \right)\left( {\frac{{3M}}{{4{R^3}}}{r^2}dy} \right)\quad ...(iii)$$
As we know, $$\begin{equation} \begin{aligned} {y^2} + {r^2} = {R^2} \\ {r^2} = {R^2} - {y^2}\quad ...(iv) \\\end{aligned} \end{equation} $$
From eqution $(iii)$ & $(iv)$ we get, $$d{I_x} = \frac{{3M}}{{4{R^3}}}\left\{ {\frac{{{{\left( {{R^2} - {y^2}} \right)}^2}}}{4} + {x^2}\left( {{R^2} - {y^2}} \right)} \right\}dy$$
Integrating the above equation with proper limits we get, $$\begin{equation} \begin{aligned} \int\limits_0^{{I_x}} {d{I_x}} = \int\limits_{ - R}^R {\frac{{3M}}{{4{R^3}}}\left\{ {\left( {\frac{{{R^4} + {y^4} - 2{R^2}{y^2}}}{4}} \right) + \left( {{R^2}{y^2} - {y^4}} \right)} \right\}dy} \\ \int\limits_0^{{I_x}} {d{I_x}} = \int\limits_{ - R}^R {\frac{{3M}}{{16{R^3}}}\left( {{R^4} - 3{y^4} + 2{R^2}{y^2}} \right)dy} \\ \left[ I \right]_0^{{I_x}} = \frac{{3M}}{{16{R^3}}}\left[ {{R^4}x - \frac{{3{x^5}}}{5} + \frac{{2{R^2}{x^3}}}{3}} \right]_{ - R}^R \\ \left( {{I_x} - 0} \right) = \frac{{3M}}{{16{R^3}}}\left\{ {\left( {{R^5} - \frac{{3{R^5}}}{5} + \frac{{2{R^5}}}{3}} \right) - \left( { - {R^5} + \frac{{3{R^5}}}{5} - \frac{{2{R^5}}}{3}} \right)} \right\} \\ {I_x} = \frac{{3M}}{{16{R^3}}}\left( {2{R^5} - \frac{{6{R^5}}}{5} + \frac{{4{R^5}}}{3}} \right) \\ {I_x} = \frac{{3M}}{{16{R^3}}}\left( {\frac{{32{R^5}}}{{15}}} \right) \\ {I_x} = \frac{{2M{R^2}}}{5} \\\end{aligned} \end{equation} $$
So, the moment of inertia along the diameter of the sphere is, ${I_{x}} = \frac{{2M{R^2}}}{5}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} {I_{x}} = MK_{x}^2 \\ \frac{{2M{R^2}}}{5} = MK_{x}^2 \\ {K_{x}} = \sqrt {\frac{2}{5}} R \\\end{aligned} \end{equation} $$
So, radius of gyration along the diameter of the sphere is, ${K_{x}} = \sqrt {\frac{2}{5}} R$

For moment of inertia about an axis which is tangent to the sphere

From parallel axis theorem, $$\begin{equation} \begin{aligned} I = {I_{COM}} + M{R^2} \\ I = \frac{{2M{R^2}}}{5} + M{R^2} \\ I = \frac{{7M{R^2}}}{5} \\\end{aligned} \end{equation} $$
So, moment of inertia about an axis which is tangent to the sphere is, $I = \frac{{7M{R^2}}}{5}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} I = M{K^2} \\ \frac{{7M{R^2}}}{5} = M{K^2} \\ K = \sqrt {\frac{7}{5}} \\\end{aligned} \end{equation} $$
So, radius of gyration about an axis which is tangent to the sphere is, $K = \sqrt {\frac{7}{5}} R$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD