Physics > Basics of Rotational Motion > 3.0 Kinematics of a plane motion

  Basics of Rotational Motion
    1.0 Rigid body
    2.0 Motion of rigid body
    3.0 Kinematics of a plane motion
    4.0 Moment of inertia
    5.0 Radius of gyration $(K)$
    6.0 Theorems of moment of inertia
    7.0 Moment of inertia of uniform continious rigid bodies

3.3 Kinematics equation for rotational motion
Kinematics equation for uniformly accelerated rotational motion is as follows,
  • $\overrightarrow \omega = {\overrightarrow \omega _0} + \overrightarrow \alpha t$
  • $\overrightarrow \theta = {\overrightarrow \omega _0}t + \frac{1}{2}\overrightarrow \alpha {t^2}$
  • ${\omega ^2} - \omega _0^2 = 2\overrightarrow \alpha \overrightarrow \theta $
where,
$\overrightarrow \omega $: angular velocity at any time $t$
${\overrightarrow \omega _0}$: initial angular velocity
$\overrightarrow \alpha $: angular acceleration

Derivations

For, $\overrightarrow \omega = {\overrightarrow \omega _0} + \overrightarrow \alpha t$

As we know, $$\overrightarrow \alpha = \frac{{d\overrightarrow \omega }}{{dt}}$$ or $$\overrightarrow \alpha dt = d\overrightarrow \omega $$
Integrating the above limits with proper limits we get, $$\begin{equation} \begin{aligned} \int\limits_{{\omega _0}}^\omega {d\overrightarrow \omega } = \overrightarrow \alpha \left[ t \right]_0^t \\ \left[ {\overrightarrow \omega } \right]_{{\omega _0}}^\omega = \overrightarrow \alpha \left[ t \right]_0^t \\ \left( {\overrightarrow \omega - {{\overrightarrow \omega }_0}} \right) = \overrightarrow \alpha \left( {t - 0} \right) \\ \overrightarrow \omega - {\overrightarrow \omega _0} = \overrightarrow \alpha t \\\end{aligned} \end{equation} $$ or $$\overrightarrow \omega = {\overrightarrow \omega _0} + \overrightarrow \alpha t$$

For, $\overrightarrow \theta = {\overrightarrow \omega _0}t + \frac{1}{2}\overrightarrow \alpha {t^2}$

As we know, $$\begin{equation} \begin{aligned} \overrightarrow \omega = {\overrightarrow \omega _0} + \overrightarrow \alpha t\quad ...(i) \\ \overrightarrow \omega = \frac{{d\overrightarrow \theta }}{{dt}}\quad ...(ii) \\\end{aligned} \end{equation} $$ From equation $(i)$ & $(ii)$ we get, $$\frac{{d\overrightarrow \theta }}{{dt}} = {\overrightarrow \omega _0} + \overrightarrow \alpha t$$ or $$d\overrightarrow \theta = {\overrightarrow \omega _0}dt + \overrightarrow \alpha dt$$ Integrating the above equation with proper limits we get, $$\begin{equation} \begin{aligned} \int\limits_0^\theta {d\overrightarrow \theta = {{\overrightarrow \omega }_0}\int\limits_0^t {dt} + } \overrightarrow \alpha \int\limits_0^t {tdt} \\ \left[ {\overrightarrow \theta } \right]_0^\theta = {\overrightarrow \omega _0}\left[ t \right]_0^t + \overrightarrow \alpha \left[ {\frac{{{t^2}}}{2}} \right]_0^t \\ \left( {\overrightarrow \theta - 0} \right) = {\overrightarrow \omega _0}(t - 0) + \frac{1}{2}\overrightarrow \alpha \left( {{t^2} - 0} \right) \\ \overrightarrow \theta = {\overrightarrow \omega _0}t + \frac{1}{2}\overrightarrow \alpha {t^2} \\\end{aligned} \end{equation} $$

For, ${\omega ^2} - \omega _0^2 = 2\overrightarrow \alpha \overrightarrow \theta $

As we know, $$\overrightarrow \alpha = \frac{{d\overrightarrow \omega }}{{dt}}$$ or $$\begin{equation} \begin{aligned} \overrightarrow \alpha = \frac{{d\overrightarrow \omega }}{{d\overrightarrow \theta }}\frac{{d\overrightarrow \theta }}{{dt}}\quad ...(i) \\ \overrightarrow \omega = \frac{{d\overrightarrow \theta }}{{dt}}\quad ...(ii) \\\end{aligned} \end{equation} $$ From equation $(i)$ & $(ii)$ we get, $$\overrightarrow \alpha = \overrightarrow \omega \frac{{d\overrightarrow \omega }}{{d\overrightarrow \theta }}$$ or $$\overrightarrow \omega d\overrightarrow \omega = \overrightarrow \alpha d\overrightarrow \theta $$
Integrating the above equation with proper limits we get, $$\begin{equation} \begin{aligned} \int\limits_{{\omega _0}}^\omega {\overrightarrow \omega d\overrightarrow \omega = \overrightarrow \alpha \int\limits_0^\theta {d\overrightarrow \theta } } \\ \left[ {\frac{{{\omega ^2}}}{2}} \right]_{{\omega _0}}^\omega = \overrightarrow \alpha \left[ {\overrightarrow \theta } \right]_0^\theta \\ \frac{1}{2}\left( {{\omega ^2} - \omega _0^2} \right) = \overrightarrow \alpha \left( {\overrightarrow \theta - 0} \right) \\ {\omega ^2} - \omega _0^2 = 2\overrightarrow {\alpha \overrightarrow \theta } \\\end{aligned} \end{equation} $$

Relation between angular velocity $\left( {\overrightarrow \omega } \right)$ & linear velocity $\left( {\overrightarrow v } \right)$

Linear velocity $\left( {\overrightarrow v } \right)$ is the vector cross-product of the angular velocity $\left( {\overrightarrow \omega } \right)$ and the radius vector $\left( {\overrightarrow r } \right)$ from point $O$.

Mathematically, $$\overrightarrow v = \overrightarrow \omega \times \overrightarrow r \quad ...(i)$$
where,
$\overrightarrow v $: linear velocity
$\overrightarrow \omega $: angular velocity
$\overrightarrow r $: perpendicular distance from the axis of rotation

From the property of the vector cross product we know, $$\overrightarrow v \bot \overrightarrow \omega \quad \& \quad \overrightarrow v \bot \overrightarrow r $$
Consider a rigid body rotating with angular velocity $\left( {\overrightarrow \omega } \right)$ about an axis of rotation (AOR).

Assume a particle on the rigid body which moves in a circle of radius $r$ as shown in the figure.

Let, $$\begin{equation} \begin{aligned} \overrightarrow \omega = \omega \widehat k\quad ...(ii) \\ \overrightarrow r = r\widehat i\quad ...(iii) \\\end{aligned} \end{equation} $$
From equation $(i),(ii)$ & $(iii)$ we get, $$\overrightarrow v = \omega \widehat k \times r\widehat i$$ or \[\overrightarrow v = \left| {\begin{array}{c} {\widehat i}&{\widehat j}&{\widehat k} \\ 0&0&\omega \\ r&0&0 \end{array}} \right|\]
$$\begin{equation} \begin{aligned} \overrightarrow v = \widehat i(0 - 0) - \widehat j(0 - r\omega ) + \widehat k(0 - 0) \\ \overrightarrow v = r\omega \widehat j \\\end{aligned} \end{equation} $$
Note:
  • Angular velocity is same for all the particle on the rigid body
  • Linear velocity depends on the perpendicular distance of the particle from an axis of rotation (AOR)
  • Linear velocity of the particle is not constant as the direction of motion continiously changes because the particle moves in a circle
  • If the angular acceleration is zero, linear speed of the particle remains constant

Relation between angular acceleration $\left( {\overrightarrow \alpha } \right)$ & linear acceleration $\left( {\overrightarrow a } \right)$


Linear acceleration $\left( {\overrightarrow a } \right)$ is the vector cross product of the angular acceleration $\left( {\overrightarrow \alpha } \right)$ and the radius vector $\left( {\overrightarrow r } \right)$ from point $O$.

Mathematically, $$\overrightarrow a = \overrightarrow \alpha \times \overrightarrow r \quad ...(i)$$
where,
$\overrightarrow a $: linear acceleration
$\overrightarrow \alpha $: angular acceleration
$\overrightarrow r $: perpendicular distance from the axis of rotation

From the property of the vector cross product, we know, $$\overrightarrow a \bot \overrightarrow \alpha \quad \& \quad \overrightarrow a \bot \overrightarrow r $$
Consider a rigid body rotating with angular acceleration $\left( {\overrightarrow \alpha } \right)$ about an axis of rotation (AOR).

Assume a particle on the rigid bod y which moves in a circle of radius $r$ as shown in the figure.

Let, $$\begin{equation} \begin{aligned} \overrightarrow a = \alpha \widehat k\quad ...(ii) \\ \overrightarrow r = r\widehat i\quad ...\left( {iii} \right) \\\end{aligned} \end{equation} $$
From equation $(i),(ii)$ & $(iii)$ we get, $$\overrightarrow a = \alpha \widehat k \times r\widehat i$$ or \[\overrightarrow a = \left| {\begin{array}{c} {\widehat i}&{\widehat j}&{\widehat k} \\ 0&0&\alpha \\ r&0&0 \end{array}} \right|\]
$$\begin{equation} \begin{aligned} \vec a = \hat i(0 - 0) - \hat j(0 - r\alpha ) + \hat k(0 - 0) \\ \vec a = r\alpha \hat j \\\end{aligned} \end{equation} $$
Note:
  • Angular acceleration is same for all the particles on the rigid body
  • Linear acceleration depends on the perpendicular distance of the particle from an axis of rotation (AOR)
  • Linear acceleration of the particle is not constant as the direction of motion continiously changes because the particle moves in a circle
Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD