Physics > Basics of Rotational Motion > 7.0 Moment of inertia of uniform continious rigid bodies

  Basics of Rotational Motion
    1.0 Rigid body
    2.0 Motion of rigid body
    3.0 Kinematics of a plane motion
    4.0 Moment of inertia
    5.0 Radius of gyration $(K)$
    6.0 Theorems of moment of inertia
    7.0 Moment of inertia of uniform continious rigid bodies

7.6 Cylindrical shell
Consider a uniform hollow cylinder of mass $M$, length $L$, inner radius $R_1$ and outer radius $R_2$ as shown in the figure.

Volume of the hollow cylinder $V = \pi L\left( {R_2^2 - R_1^2} \right)$

Mass per unit volume $$\left( {{\lambda _V}} \right) = \frac{M}{{\pi L\left( {R_2^2 - R_1^2} \right)}}\quad ...(i)$$
Consider an infinitesimally small section in the shape of a ring of mass $dm$, radius $r$ and thickness $dr$ as shown in the figure.

Area of an infinitesimally small section of a ring, $\left( {dA} \right) = 2\pi rdr$

Volume of an infinitesimally small section of a ring along the cylinder, $(dV)=(dA)L$ $$dV = (2\pi rdr)L\quad ...(ii)$$
Mass of the infinitesimally small section, $\left( {dm} \right) = {\lambda _V}dV$ $$\begin{equation} \begin{aligned} dm = \left( {\frac{M}{{\pi L(R_2^2 - R_1^2)}}} \right)(2\pi Lrdr) \\ dm = \frac{{2Mrdr}}{{(R_2^2 - R_1^2)}}\quad ...(iii) \\\end{aligned} \end{equation} $$
So, moment of inertia of a ring of radius $r$ and mass $dm$ is given by, $$\int {d{I_z}} = \int_m {{r^2}dm} \quad ....(iv)$$
where,
$\int_m : $ Integrating over the entire mass
$r$: Perpendicular distance from an axis of rotation (Radius of the ring)
$dm$: mass of infinitesimally small section

From equation $(iii)$ & $(iv)$ we get, $$\begin{equation} \begin{aligned} \int {d{I_z}} = \int_m {{r^2}\left( {\frac{{2Mrdr}}{{\left( {R_2^2 - R_1^2} \right)}}} \right)} \\ \int {d{I_z} = \frac{{2M}}{{\left( {R_2^2 - R_1^2} \right)}}\int_m {{r^3}dr} } \\\end{aligned} \end{equation} $$
Integrating the above equation for the whole cylindrical shell we get, $$\begin{equation} \begin{aligned} \int\limits_0^{{I_z}} {d{I_z}} = \frac{{2M}}{{\left( {R_2^2 - R_1^2} \right)}}\int\limits_{{R_1}}^{{R_2}} {{r^3}dr} \\ \left[ {{I_z}} \right]_0^{{I_z}} = \frac{{2M}}{{\left( {R_2^2 - R_1^2} \right)}}\left[ {\frac{{{r^4}}}{4}} \right]_{{R_1}}^{{R_2}} \\ \left( {{I_z} - 0} \right) = \frac{{2M}}{{\left( {R_2^2 - R_1^2} \right)}}\left( {\frac{{R_2^4}}{4} - \frac{{R_1^4}}{4}} \right) \\ {I_z} = \frac{{2M}}{{4\left( {R_2^2 - R_1^2} \right)}}\left( {R_2^4 - R_1^4} \right) \\ {I_z} = \frac{{M\left( {R_2^2 - R_1^2} \right)\left( {R_2^2 + R_1^2} \right)}}{{2\left( {R_2^2 - R_1^2} \right)}} \\ {I_z} = \frac{{M\left( {R_2^2 + R_1^2} \right)}}{2}\quad ...(v) \\\end{aligned} \end{equation} $$
So, moment of inertia along the axis of the hollow cylinder of inner radius $R_1$ and outer radius $R_2$ is, ${I_z} = \frac{{M\left( {R_2^2 + R_1^2} \right)}}{2}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} I = M{K^2} \\ \frac{{M\left( {R_2^2 + R_1^2} \right)}}{2} = M{K^2} \\ K = \sqrt {\frac{{\left( {R_2^2 + R_1^2} \right)}}{2}} \\\end{aligned} \end{equation} $$
So, radius of gyration along the axis of the hollow cylinder of inner radius $R_1$ and outer radius $R_2$ is, $K = \sqrt {\frac{{\left( {R_2^2 + R_1^2} \right)}}{2}} $


For hollow cylinder

As we know that the moment of inertia along the axis of a cylindrical shell of inner & outer radius $R_1$ & $R_2$ respectively is given by, $${I_z} = \frac{{M\left( {R_2^2 + R_1^2} \right)}}{2}\quad ...(vi)$$
For hollow cyclinder, $${R_1} = {R_2} = R\quad ...(vii)$$
From equation $(vi)$ & $(vii)$ we get, $${I_z} = M{R^2}$$
So, moment of inertia along the axis of the hollow cylinder is, ${I_z} = M{R^2}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} I = M{K^2} \\ \frac{{M{R^2}}}{2} = M{K^2} \\ K = \frac{R}{{\sqrt 2 }} \\\end{aligned} \end{equation} $$
So, radius of gyration along the axis of the hollow cylinder is, $K = R$

For moment of inertia about an axis passing through its centre and perpendicular to its own axis


Consider an infinitesimally small section in the shape of a ring of mass $dM$, radius $R$, width $dr$ and thickness $dy$ at a distance $y$ from the axis of rotation as shown in the figure.

Area of the circular ring $(dA) = 2\pi rdr$

Volume of the infinitesimally small section, $(dV) = dAdy$ $$dV = 2\pi rdrdy\quad ...(viii)$$
Mass of the infinitesimally small section, $(dM) = {\lambda _V}dV$ $$\begin{equation} \begin{aligned} dM = \left( {\frac{M}{{\pi L\left( {R_2^2 - R_1^2} \right)}}} \right)\left( {2\pi rdrdy} \right) \\ dM = \frac{{2M}}{{L\left( {R_2^2 - R_1^2} \right)}}rdrdy\quad ...(ix) \\\end{aligned} \end{equation} $$
Moment of inertia of a ring $r$ and mass $dM$ about its diameter passing through center of mass $(COM)$ is given by, $$d{I_{COM}} = \frac{{(dM){r^2}}}{2}$$
So, moment of inertia of a ring about the axis of rotation of a cylinder is given by,

From parallel axis theorem, $$\begin{equation} \begin{aligned} d{I_x} = d{I_{COM}} + {y^2}dM \\ d{I_x} = \frac{{{r^2}dM}}{2} + {y^2}dM \\ d{I_x} = \left( {\frac{{{r^2}}}{2} + {y^2}} \right)dM\quad ...(x) \\\end{aligned} \end{equation} $$
From equation $(ix)$ & $(x)$ we get, $$d{I_x} = \left( {\frac{{{r^2}}}{2} + {y^2}} \right)\left( {\frac{{2M}}{{L\left( {R_2^2 - R_1^2} \right)}}Lrdrdy} \right)$$
Integrating the above equation for the whole cylinder we get, $$\begin{equation} \begin{aligned} \int\limits_0^{{I_x}} {d{I_x}} = \frac{{2M}}{{L\left( {R_2^2 - R_1^2} \right)}}\int\limits_{ - \frac{L}{2}}^{\frac{L}{2}} {\;\int\limits_{{R_1}}^{{R_2}} {\left( {\frac{{{r^3}}}{2} + r{y^2}} \right)} } \\ \left[ {{I_x}} \right]_0^{{I_x}} = \frac{{2M}}{{L\left( {R_2^2 - R_1^2} \right)}}\int\limits_{ - \frac{L}{2}}^{\frac{L}{2}} {\left[ {\frac{{{r^4}}}{8} + \frac{{{r^2}{y^2}}}{2}} \right]_{{R_1}}^{{R_2}}dy} \\ \left( {{I_x} - 0} \right) = \frac{{2M}}{{L\left( {R_2^2 - R_1^2} \right)}}\int\limits_{ - \frac{L}{2}}^{\frac{L}{2}} {\left\{ {\left( {\frac{{R_2^4}}{8} + \frac{{R_2^2{y^2}}}{2}} \right) - \left( {\frac{{R_1^4}}{8} + \frac{{R_1^2{y^2}}}{2}} \right)} \right\}dy} \\ {I_x} = \frac{M}{{L\left( {R_2^2 - R_1^2} \right)}}\int\limits_{ - \frac{L}{2}}^{\frac{L}{2}} {\left( {\frac{{R_2^4 - R_1^4}}{4} + \left( {R_2^2 - R_1^2} \right){y^2}} \right)dy} \\ {I_x} = \frac{M}{{L\left( {R_2^2 - R_1^2} \right)}}\left( {R_2^2 - R_1^2} \right)\int\limits_{ - \frac{L}{2}}^{\frac{L}{2}} {\left( {\frac{{R_2^2 + R_1^2}}{4} + {y^2}} \right)dy} \\ {I_x} = \frac{M}{L}\int\limits_{ - \frac{L}{2}}^{\frac{L}{2}} {\left( {\frac{{R_2^2 + R_1^2}}{4} + {y^2}} \right)dy} \\ {I_x} = \frac{M}{L}\left[ {\left( {\frac{{R_2^2 + R_1^2}}{4}} \right)y + \frac{{{y^3}}}{3}} \right]_{ - \frac{L}{2}}^{\frac{L}{2}} \\ {I_x} = \frac{M}{L}\left\{ {\left[ {\left( {\frac{{R_2^2 + R_1^2}}{4}} \right)\frac{L}{2} + \frac{{{L^3}}}{{24}}} \right] - \left[ { - \left( {\frac{{R_2^2 + R_1^2}}{4}} \right)\frac{L}{2} - \frac{{{L^3}}}{{24}}} \right]} \right\} \\ {I_x} = M\left\{ {\left( {\frac{{R_2^2 + R_1^2}}{4}} \right) + \frac{{{L^2}}}{{12}}} \right\} \\ \\\end{aligned} \end{equation} $$
So, moment of inertia about an axis passing through its centre and perpendicular to its own axis is, ${I_x} = M\left\{ {\left( {\frac{{R_2^2 + R_1^2}}{4}} \right) + \frac{{{L^2}}}{{12}}} \right\}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} I = M{K^2} \\ M\left\{ {\left( {\frac{{R_2^2 + R_1^2}}{4}} \right) + \frac{{{L^2}}}{{12}}} \right\} = M{K^2} \\ K = \sqrt {\left( {\frac{{R_2^2 + R_1^2}}{4}} \right) + \frac{{{L^2}}}{{12}}} \\\end{aligned} \end{equation} $$
So, radius of gyration about an axis passing through its centre and perpendicular to its own axis is, $K = \sqrt {\left( {\frac{{R_2^2 + R_1^2}}{4}} \right) + \frac{{{L^2}}}{{12}}} $


For hollow cylinder

As we know that the moment of inertia along the axis of a cylindrical shell of inner & outer radius $R_1$ & $R_2$ respectively is given by, $${I_x} = M\left\{ {\left( {\frac{{R_2^2 + R_1^2}}{4}} \right) + \frac{{{L^2}}}{{12}}} \right\}\quad ...(xi)$$
For hollow cylinder, $${R_1} = {R_2} = R\quad ...(xii)$$
From equation $(xi)$ & $(xii)$ we get, $${I_x} = M\left( {\frac{{{R^2}}}{2} + \frac{{{L^2}}}{{12}}} \right)$$
So, moment of inertia along the axis passing through its centre and perpendicular to its own axis is, ${I_x} = M\left( {\frac{{{R^2}}}{2} + \frac{{{L^2}}}{{12}}} \right)$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} I = M{K^2} \\ M\left( {\frac{{{R^2}}}{2} + \frac{{{L^2}}}{{12}}} \right) = M{K^2} \\ K = \sqrt {\left( {\frac{{{R^2}}}{2} + \frac{{{L^2}}}{{12}}} \right)} \\\end{aligned} \end{equation} $$
So, radius of gyration along the axis passing through its centre and perpendicular to its own axis is, $K = \sqrt {\left( {\frac{{{R^2}}}{2} + \frac{{{L^2}}}{{12}}} \right)} $



Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD