Physics > Basics of Rotational Motion > 7.0 Moment of inertia of uniform continious rigid bodies

  Basics of Rotational Motion
    1.0 Rigid body
    2.0 Motion of rigid body
    3.0 Kinematics of a plane motion
    4.0 Moment of inertia
    5.0 Radius of gyration $(K)$
    6.0 Theorems of moment of inertia
    7.0 Moment of inertia of uniform continious rigid bodies

7.9 Spherical shell
Consider a hollow sphere of outer radius $R_2$, inner radius $R_1$ and mass $M$

Volume of the hollow sphere is, $(V) = \frac{4}{3}\pi \left( {R_2^3 - R_1^3} \right)$

Mass per unit volume, $\left( {{\lambda _V}} \right) = \frac{M}{V} = \frac{{3M}}{{4\pi \left( {R_2^3 - R_1^3} \right)}}$

For moment of inertia about its diameter

Consider an infinitesimally small section in the shape of a hollow sphere of raidus $r$, thickness $dr$ and mass $dm$

Area of the hollow sphere of radius $r$, $A = 4\pi {r^2}$

Volume of the infinitesimally small section of mass, $dV = 4\pi {r^2}dr$

Mass of an infinitesimally small section, $dm = {\lambda _V}dV$ $$\begin{equation} \begin{aligned} dm = \left( {\frac{{3M}}{{4\pi \left( {R_2^3 - R_1^3} \right)}}} \right)\left( {4\pi {r^2}dr} \right) \\ dm = \frac{{3M}}{{\left( {R_2^3 - R_1^3} \right)}}{r^2}dr\quad ...(i) \\\end{aligned} \end{equation} $$
Moment of inertia of an axis about the diameter of a hollow sphere of radius $r$ and mass $dm$ passing through its $COM$ is, $$dI = \frac{{2(dm){r^2}}}{3}\quad ...(ii)$$
From equation $(i)$ & $(ii)$ we get, $$\begin{equation} \begin{aligned} dI = \left( {\frac{{2{r^2}}}{3}} \right)\left( {\frac{{3M}}{{\left( {R_2^3 - R_1^3} \right)}}{r^2}dr} \right) \\ dI = \left( {\frac{{2M}}{{\left( {R_2^3 - R_1^3} \right)}}{r^4}dr} \right) \\\end{aligned} \end{equation} $$
Integrating the above equation for the spherical shell of outer radius $R_2$ & inner radius $R_1$ is, $$\begin{equation} \begin{aligned} \int\limits_0^{{I_{COM}}} {dI} = \int\limits_{{R_1}}^{{R_2}} {\frac{{2M}}{{5\left( {R_2^3 - R_1^3} \right)}}{r^4}dr} \\ \left[ I \right]_0^{{I_{COM}}} = \frac{{2M}}{{5\left( {R_2^3 - R_1^3} \right)}}\left[ {\frac{{{r^5}}}{5}} \right]_{{R_1}}^{{R_2}} \\ ({I_{COM}} - 0) = \frac{{2M\left( {R_2^5 - R_1^5} \right)}}{{5\left( {R_2^3 - R_1^3} \right)}} \\ {I_{COM}} = \frac{{2M\left( {{R_2} - {R_1}} \right)\left( {R_2^4 + R_2^3{R_1} + R_2^2R_1^2 + {R_2}R_2^3 + R_1^4} \right)}}{{5\left( {{R_2} - {R_1}} \right)\left( {R_2^2 + {R_2}{R_1} + R_1^2} \right)}} \\ {I_{COM}} = \frac{{2M}}{5}\left( {\frac{{R_2^4 + R_2^3{R_1} + R_2^2R_1^2 + {R_2}R_1^3 + R_1^4}}{{R_2^2 + {R_2}{R_1} + R_1^2}}} \right)\quad ...(iii) \\\end{aligned} \end{equation} $$
So, moment of interia along the diameter of a spherical shell of outer radius $R_2$ & inner radius $R_1$ and passing through its $COM$ is, ${I_{COM}} = \frac{{2M}}{5}\left( {\frac{{R_2^4 + R_2^3{R_1} + R_2^2R_1^2 + {R_2}R_1^3 + R_1^4}}{{R_2^2 + {R_2}{R_1} + R_1^2}}} \right)$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} {I_{COM}} = MK_{COM}^2 \\ \frac{{2M}}{5}\left( {\frac{{R_2^4 + R_2^3{R_1} + R_2^2R_1^2 + {R_2}R_2^3 + R_1^4}}{{R_2^2 + {R_2}{R_1} + R_1^2}}} \right) = MK_{COM}^2 \\ {K_{COM}} = \sqrt {\frac{2}{5}\left( {\frac{{R_2^4 + R_2^3{R_1} + R_2^2R_1^2 + {R_2}R_2^3 + R_1^4}}{{R_2^2 + {R_2}{R_1} + R_1^2}}} \right)} \\\end{aligned} \end{equation} $$
So, radius of gyration along the diameter of a spherical shell of outer radius $R_2$ & inner radius $R_1$ and passing through its $COM$, ${K_{COM}} = \sqrt {\frac{2}{5}\left( {\frac{{R_2^4 + R_2^3{R_1} + R_2^2R_1^2 + {R_2}R_1^3 + R_1^4}}{{R_2^2 + {R_2}{R_1} + R_1^2}}} \right)} $

For hollow sphere, $${R_1} = {R_2} = R\quad ...(iv)$$
From equation $(iii)$ & $(iv)$ we get, $$\begin{equation} \begin{aligned} I = \frac{{2M}}{5}\left[ {\frac{{5{R^4}}}{{3{R^2}}}} \right] \\ I = \frac{{2M{R^2}}}{3} \\\end{aligned} \end{equation} $$
So, moment of inertia along the diameter of a hollow sphere of radius $R$ and passing through its $COM$ is, $I = \frac{{2M{R^2}}}{3}$

For solid sphere, \[\left. \begin{gathered} {R_2} = R \hspace{1em} \\ {R_1} = 0 \hspace{1em} \\ \end{gathered} \right\}\quad ...(v)\]

From equation $(iii)$ & $(v)$ we get, $$\begin{equation} \begin{aligned} I = \frac{{2M}}{5}\left[ {\frac{{{R^4}}}{{{R^2}}}} \right] \\ I = \frac{{2M{R^2}}}{5} \\\end{aligned} \end{equation} $$
So, moment of inertia along the diameter of a solid sphere of radius $R$ and passing through its $COM$ is, $I = \frac{{2M{R^2}}}{5}$

Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD