Physics > Basics of Rotational Motion > 7.0 Moment of inertia of uniform continious rigid bodies

  Basics of Rotational Motion
    1.0 Rigid body
    2.0 Motion of rigid body
    3.0 Kinematics of a plane motion
    4.0 Moment of inertia
    5.0 Radius of gyration $(K)$
    6.0 Theorems of moment of inertia
    7.0 Moment of inertia of uniform continious rigid bodies

7.10 Solid cone
Consider a right circular cone of radius $R$ and height $H$.

Volume of the cone, $\left( V \right) = \frac{1}{3}\pi {R^2}H$

Mass per unit volume of cone, $\left( {{\lambda _V}} \right) = \frac{{3M}}{{\pi {R^2}H}}$


For moment of inertia about an axis through its centre and joining its vertex to centre of base


Consider an infinitesimally small section of mass in the shape of a cylinder of radius $r$ and thickness $dy$ we get,

Volume of an infinitesimally small section, $\left( {dV} \right) = \pi {r^2}dy$

Mass of the infinitesimally small section, $\left( {dm} \right) = {\lambda _V}dV = \frac{{3M}}{{\pi {R^2}H}}\pi {r^2}dy$ $$dm = \frac{{3M{r^2}dy}}{{{R^2}H}}$$
Moment of inertia of a cylinder of mass $dm$ and radius $r$ about its axis is, $$\begin{equation} \begin{aligned} d{I_{COM}} = \frac{{{r^2}dm}}{2} \\ d{I_{COM}} = \frac{{{r^2}}}{2}\left( {\frac{{3M{r^2}dy}}{{{R^2}H}}} \right) \\ d{I_{COM}} = \frac{{3M{r^4}dy}}{{2{R^2}H}} \\\end{aligned} \end{equation} $$
From the property of similar triangle we get,
$$\begin{equation} \begin{aligned} \frac{{H - y}}{H} = \frac{r}{R} \\ H - y = \frac{{Hr}}{R} \\ y = H\left( {1 - \frac{r}{R}} \right) \\\end{aligned} \end{equation} $$ Also, $$dy = - \frac{H}{R}dr$$ So, $$\begin{equation} \begin{aligned} d{I_{COM}} = \frac{{3M}}{{2{R^2}H}}{r^4}\left( { - \frac{H}{R}} \right)dr \\ \int\limits_0^{{I_{COM}}} {dI} = \frac{{ - 3M}}{{2{R^3}}}\int\limits_R^0 {{r^4}dr} \\ \left[ I \right]_0^{{I_{COM}}} = \frac{{3M}}{{2{R^3}}}\int\limits_0^R {{r^4}dr} \\ \left( {{I_{COM}} - 0} \right) = \frac{{3M}}{{2{R^3}}}\left[ {\frac{{{R^5}}}{5}} \right]_0^R \\ {I_{COM}} = \frac{{3M{R^2}}}{{10}} \\\end{aligned} \end{equation} $$
So, moment of inertia of a solid cone of radius $R$ and passing through its $COM$ is, ${I_{COM}} = \frac{{3M{R^2}}}{{10}}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} {I_{COM}} = MK_{COM}^2 \\ \frac{{3M{R^2}}}{{10}} = MK_{COM}^2 \\ {K_{COM}} = \sqrt {\frac{3}{{10}}} R \\\end{aligned} \end{equation} $$
So, radius of gyration of a solid cone of radius $R$ and passing through its $COM$ is, ${K_{COM}} = \sqrt {\frac{3}{10}} R$


Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD