Physics > Basics of Rotational Motion > 7.0 Moment of inertia of uniform continious rigid bodies

  Basics of Rotational Motion
    1.0 Rigid body
    2.0 Motion of rigid body
    3.0 Kinematics of a plane motion
    4.0 Moment of inertia
    5.0 Radius of gyration $(K)$
    6.0 Theorems of moment of inertia
    7.0 Moment of inertia of uniform continious rigid bodies

7.2 Rectangular lamina

Consider a rectangular lamina of length $a$, breadth $b$ and mass $m$.

Mss per unit area $$\left( \lambda \right) = \frac{M}{{ab}}$$
$I_z$ is the moment of inertia about an axis passing through its centre and perpendicular to its plane.

So, from perpendicular axis theorem, $${I_z} = {I_x} + {I_y}\quad ...(i)$$
So, for finding $I_z$, we have to find $I_x$ & $I_y$

For $I_x$

Consider an infinitesimal small section $dy$ and small area $dA$ of mass $dm$ at a distance $y$ from an axis of rotation. $$dA = ady$$
$$\begin{equation} \begin{aligned} dm = {\lambda _A}dA \\ dm = \left( {\frac{M}{{ab}}} \right)(ady) \\ dm = \frac{{Mdy}}{b}\quad ...(ii) \\\end{aligned} \end{equation} $$
As we know that the moment of inertia $(I)$ of a continious rigid body is given by, $${I_x} = \int_m {{y^2}dm\quad ...(iii)} $$
where,
$\int_m : $ Integrating over the entire mass
$y$: perpendicular distance from an axis of rotation
$dm$: mass of infinitesimally small section

From equation $(ii)$ & $(iii)$ we get, $$\begin{equation} \begin{aligned} {I_x} = \int_m {{y^2}\left( {\frac{{Mdy}}{b}} \right)} \\ {I_x} = \frac{M}{b}\int_m {{y^2}dy} \\\end{aligned} \end{equation} $$
Integrating the above equation for the whole rectangular lamina is given by, $$\begin{equation} \begin{aligned} {I_x} = \frac{M}{b}\int\limits_{ - \frac{b}{2}}^{\frac{b}{2}} {{y^2}dy} \\ {I_x} = \frac{M}{b}\left[ {\frac{{{y^3}}}{3}} \right]_{ - \frac{b}{2}}^{\frac{b}{2}} \\ {I_x} = \frac{M}{b}\left\{ {\frac{{{b^3}}}{{24}} - \left( { - \frac{{{b^3}}}{{24}}} \right)} \right\} \\ {I_x} = \frac{{M{b^2}}}{{12}}\quad ...(iv) \\\end{aligned} \end{equation} $$
So, moment of inertia about an axis pass through centre of mass & in the plane of rectangular lamina is, ${I_x} = \frac{{M{b^2}}}{{12}}$

For $I_y$

Consider an infinitesimal small section $dx$ and small area $dA$ of mass $dm$ at a distance $x$ from an axis of rotation. $$dA = bdx$$
$$\begin{equation} \begin{aligned} dm = {\lambda _A}dA \\ dm = \left( {\frac{M}{{ab}}} \right)(bdx) \\ dm = \frac{{Mdx}}{a}\quad ...(v) \\\end{aligned} \end{equation} $$
As we know that the moment of inertia $(I)$ of a continious rigid body is given by, $${I_y} = \int_m {{x^2}dm\quad ...(vi)} $$
where,
$\int_m : $ Integrating over the entire mass
$x$: perpendicular distance from an axis of rotation
$dm$: mass of infinitesimally small section

From equation $(v)$ & $(vi)$ we get, $$\begin{equation} \begin{aligned} {I_y} = \int_m {{x^2}\left( {\frac{{Mdx}}{a}} \right)} \\ {I_y} = \frac{M}{a}\int_m {{x^2}dx} \\\end{aligned} \end{equation} $$
Integrating the above equation for the whole rectangular lamina is given by, $$\begin{equation} \begin{aligned} {I_y} = \frac{M}{a}\int\limits_{ - \frac{a}{2}}^{\frac{a}{2}} {{x^2}dy} \\ {I_y} = \frac{M}{a}\left[ {\frac{{{x^3}}}{3}} \right]_{ - \frac{a}{2}}^{\frac{a}{2}} \\ {I_y} = \frac{M}{a}\left\{ {\frac{{{a^3}}}{{24}} - \left( { - \frac{{{a^3}}}{{24}}} \right)} \right\} \\ {I_y} = \frac{{M{a^2}}}{{12}}\quad ...(vii) \\\end{aligned} \end{equation} $$
So, moment of inertia about an axis pass through centre of mass & in the plane of rectangular lamina is, ${I_y} = \frac{{M{a^2}}}{{12}}$

From equation $(i),(iv)$ & $(vii)$ we get, $${I_z} = \frac{{M{b^2}}}{{12}} + \frac{{M{a^2}}}{{12}}$$ or $${I_z} = \frac{{M({a^2} + {b^2})}}{{12}}$$
So, moment of inertia about an axis passing through centre of mass & perpendicular to the plane of rectangular lamina is, ${I_z} = \frac{{M({a^2} + {b^2})}}{{12}}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} I = M{K^2} \\ \frac{{M({a^2} + {b^2})}}{{12}} = M{K^2} \\ K = \sqrt {\frac{{({a^2} + {b^2})}}{{12}}} \\\end{aligned} \end{equation} $$
So, radius of gyration about an axis passing through centre of mass and perpendicular to the plane of rectangular lamina is, ${K_{COM}} = K = \sqrt {\frac{{({a^2} + {b^2})}}{{12}}} $


Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD