Physics > Basics of Rotational Motion > 7.0 Moment of inertia of uniform continious rigid bodies

  Basics of Rotational Motion
    1.0 Rigid body
    2.0 Motion of rigid body
    3.0 Kinematics of a plane motion
    4.0 Moment of inertia
    5.0 Radius of gyration $(K)$
    6.0 Theorems of moment of inertia
    7.0 Moment of inertia of uniform continious rigid bodies

7.12 Hollow hemisphere
Consider a uniform hollow hemisphere of mass $M$ and radius $R$

Surface area of the hemisphere is, $(A) = 2\pi {R^2}$

Mass per unit area, $\left( {{\lambda _A}} \right) = \frac{M}{{2\pi {R^2}}}$

For moment of inertia of a uniform hollow hemisphere about an axis passing through its center as shown in the figure,


Consider an infinitesimal small hollow cylinder of mass $dm$ in the shape of a hollow cylinder of radius $r$.

Area of the infinitesimally small section, $\left( {dA} \right) = 2\pi rdy$

Mass of the infinitesimally small section, $\left( {dm} \right) = {\lambda _A}dA$ or $$\begin{equation} \begin{aligned} dm = \frac{M}{{2\pi {R^2}}} \times 2\pi rdy \\ dm = \frac{M}{R}rd\theta \quad (As,y = Rd\theta ) \\\end{aligned} \end{equation} $$
Moment of inertia of a ring of mass $dm$ and radius $r$ is, $$\begin{equation} \begin{aligned} d{I_{COM}} = {r^2}dm \\ d{I_{COM}} = {r^2}\left( {\frac{M}{R}rd\theta } \right) \\ d{I_{COM}} = \frac{M}{R}{r^3}d\theta \\\end{aligned} \end{equation} $$ As, $$\begin{equation} \begin{aligned} \sin \theta = \frac{r}{R} \\ r = R\sin \theta \\\end{aligned} \end{equation} $$ So, $$\begin{equation} \begin{aligned} d{I_{COM}} = \frac{{M{R^3}{{\sin }^3}\theta d\theta }}{R} \\ d{I_{COM}} = M{R^2}{\sin ^3}\theta d\theta \\\end{aligned} \end{equation} $$
Integrating the above equation for the whole hemisphere we get, $$\begin{equation} \begin{aligned} \int\limits_0^{{I_{COM}}} {d{I_{COM}}} = \int\limits_0^{\frac{\pi }{2}} {M{R^2}{{\sin }^3}\theta d\theta } \\ \left[ {{I_{COM}}} \right]_0^{{I_{COM}}} = \int\limits_0^{\frac{\pi }{2}} {M{R^2}\sin \theta \left( {1 - {{\cos }^2}\theta } \right)d\theta } \\\end{aligned} \end{equation} $$ Let, $$\begin{equation} \begin{aligned} \cos \theta = u \\ - \sin \theta d\theta = du \\ d\theta = - \frac{{du}}{{\sin \theta }} \\\end{aligned} \end{equation} $$ Therefore, $$\begin{equation} \begin{aligned} {I_{COM}} = - \int {M{R^2}\left( {1 - {u^2}} \right)du} \\ {I_{COM}} = \int {M{R^2}\left( {{u^2} - 1} \right)du} \\ {I_{COM}} = M{R^2}\left( {\frac{{{u^3}}}{3} - u} \right) \\\end{aligned} \end{equation} $$ or $$\begin{equation} \begin{aligned} {I_{COM}} = M{R^2}\left[ {\frac{{{{\cos }^3}\theta }}{3} - \cos \theta } \right]_0^{\frac{\pi }{2}} \\ {I_{COM}} = M{R^2}\left[ {\left( {0 - 0} \right) - \left( {\frac{1}{3} - 1} \right)} \right] \\ {I_{COM}} = \frac{{2M{R^2}}}{3} \\\end{aligned} \end{equation} $$
So, moment of inertia of a hollow hemisphere of mass $M$ and radius $R$ is, ${I_{COM}} = \frac{{2M{R^2}}}{3}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} {I_{COM}} = MK_{COM}^2 \\ \frac{{2M{R^2}}}{3} = MK_{COM}^2 \\ {K_{COM}} = \sqrt {\frac{2}{3}} R \\\end{aligned} \end{equation} $$
So, radius of gyration of a hollow hemisphere of mass $M$ and radius $R$ is, ${K_{COM}} = \sqrt {\frac{2}{3}} R$

For moment of inertia about the diameter of a hollow hemisphere

Consider an infinitesimal small hollow cylinder of mass $dm$ in the shape of a ring of radius $r$.


Area of the infinitesimally small section, $\left( {dA} \right) = 2\pi rdy$

Mass of the infinitesimally small section, $\left( {dm} \right) = {\lambda _A}dA$ or $$\begin{equation} \begin{aligned} dm = \frac{M}{{2\pi {R^2}}} \times 2\pi rdy \\ dm = \frac{M}{R}rd\theta \quad (As,y = Rd\theta ) \\\end{aligned} \end{equation} $$
For moment of inertia for a ring of radius $r$ and mass $dm$ about its diameter is, $$d{I_{COM}} = \frac{{{r^2}dm}}{2}$$

[Diagram]

From parallel axis theorem, $$\begin{equation} \begin{aligned} dI = d{I_{COM}} + {y^2}dm \\ dI = \frac{{{r^2}dm}}{2} + {y^2}dm \\ dI = \left( {\frac{{{r^2} + 2{y^2}}}{2}} \right)dm \\\end{aligned} \end{equation} $$ or $$\begin{equation} \begin{aligned} dI = \left( {\frac{{{r^2} + 2{y^2}}}{2}} \right)\left( {\frac{M}{R}rd\theta } \right) \\ dI = \left( {\frac{{{R^2} + {y^2}}}{2}} \right)\left( {\frac{M}{R}rd\theta } \right)\quad \left\{ {As,\left( {{r^2} = {R^2} - {y^2}} \right)} \right\} \\ dI = \frac{M}{{2R}}\left( {{R^2}r + {y^2}r} \right)d\theta \\\end{aligned} \end{equation} $$ From the diagram, $$\begin{equation} \begin{aligned} \sin \left( {90^\circ - \theta } \right) = \frac{r}{R} \\ \cos \theta = \frac{r}{R} \\ r = R\cos \theta \\ y = R\sin \theta \\\end{aligned} \end{equation} $$ So integrating the above equation with proper limits we get, $$\int\limits_0^I {dI} = \int\limits_0^{\frac{\pi }{2}} {\frac{M}{{2R}}\left[ {{R^3}\cos \theta + {R^3}{{\sin }^2}\theta \cos \theta } \right]d\theta } $$ Let, $$\begin{equation} \begin{aligned} \sin \theta = u \\ \cos \theta d\theta = du \\\end{aligned} \end{equation} $$ So, $$\begin{equation} \begin{aligned} \int {dI} = \int {\frac{{M{R^2}}}{2}\left[ {1 + {u^2}} \right]du} \\ \left[ I \right] = \frac{{M{R^2}}}{2}\left[ {u + \frac{{{u^3}}}{3}} \right] \\\end{aligned} \end{equation} $$ or $$\begin{equation} \begin{aligned} \left[ I \right]_0^I = \frac{{M{R^2}}}{2}\left[ {\sin \theta + \frac{{{{\sin }^3}\theta }}{3}} \right]_0^{\frac{\pi }{2}} \\ I = \frac{{M{R^2}}}{2}\left[ {\left( {1 + \frac{1}{3}} \right) - (0 - 0)} \right] \\ I = \frac{{2M{R^2}}}{3} \\\end{aligned} \end{equation} $$
So, moment of inertia about the diameter of a hollow hemisphere of mass $M$ and radius $R$ is, ${I_{COM}} = \frac{{2M{R^2}}}{3}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} {I_{COM}} = MK_{COM}^2 \\ \frac{{2M{R^2}}}{3} = MK_{COM}^2 \\ {K_{COM}} = \sqrt {\frac{2}{3}} R \\\end{aligned} \end{equation} $$
So, radius of gyration about the diameter of a hollow hemisphere of mass $M$ and radius $R$ is, ${K_{COM}} = \sqrt {\frac{2}{3}} R$

For moment of inertia about the tangent of the solid hemisphere



$$\begin{equation} \begin{aligned} I = {I_{COM}} + M{R^2} \\ I = \frac{2}{3}M{R^2} + M{R^2} \\ I = \frac{5}{3}M{R^2} \\\end{aligned} \end{equation} $$
So, moment of inertia about the tangent of solid hemisphere of mass $M$ and radius $R$ is, $I = \frac{{5M{R^2}}}{3}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} {I_{COM}} = MK_{COM}^2 \\ \frac{{5M{R^2}}}{3} = MK_{COM}^2 \\ {K_{COM}} = \sqrt {\frac{5}{3}} R \\\end{aligned} \end{equation} $$
So, radius of gyration about the tangent of solid hemisphere of mass $M$ and radius $R$ is, $K = \sqrt {\frac{5}{3}} R$


Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD