Physics > Basics of Rotational Motion > 7.0 Moment of inertia of uniform continious rigid bodies

  Basics of Rotational Motion
    1.0 Rigid body
    2.0 Motion of rigid body
    3.0 Kinematics of a plane motion
    4.0 Moment of inertia
    5.0 Radius of gyration $(K)$
    6.0 Theorems of moment of inertia
    7.0 Moment of inertia of uniform continious rigid bodies

7.8 Hollow sphere
Consider a hollow sphere of radius $R$ and mass $M$

Surface area of the uniform hollow sphere is, $(A) = 4\pi {R^2}$

Mass per unit area, $\left( {{\lambda _A}} \right) = \frac{M}{A} = \frac{{M}}{{4\pi {R^2}}}$

For moment of inertia about its diameter

Consider an infinitesimally small section in the shape of a ring of radius $r$, thickness $Rd\theta $ and mass $dm$ along the axis of rotation.

Area of ring of radius $r$, $dA = 2\pi rRd\theta $

Mass of the infinitesimally small section, $\left( {dm} \right) = {\lambda _A}dA$ $$\begin{equation} \begin{aligned} dm = \frac{M}{{4\pi {R^2}}}(2\pi rRd\theta ) \\ dm = \frac{{Mrd\theta }}{{2R}} \\\end{aligned} \end{equation} $$
Moment of inertia of ring of radius $r$ and mass $dm$ is,$$d{I_{COM}} = {r^2}dm$$ So, $$\begin{equation} \begin{aligned} d{I_{COM}} = {r^2}dm \\ d{I_{COM}} = {r^2}\left( {\frac{{Mrd\theta }}{{2R}}} \right) \\ d{I_{COM}} = \frac{{M{r^3}d\theta }}{{2R}} \\\end{aligned} \end{equation} $$ As we know, $$r = R\sin \theta $$ So, we can write, $$\begin{equation} \begin{aligned} d{I_{COM}} = \frac{{M{R^3}{{\sin }^3}\theta d\theta }}{{2R}} \\ d{I_{COM}} = \frac{{M{R^2}}}{2}{\sin ^3}\theta d\theta \\\end{aligned} \end{equation} $$
Integrating the above equation with proper limits we get, $$\begin{equation} \begin{aligned} \int\limits_0^{{I_{COM}}} {d{I_{COM}}} = \frac{{M{R^2}}}{2}\int\limits_0^\pi {{{\sin }^3}\theta d\theta } \\ \left[ {{I_{COM}}} \right]_0^{{I_{COM}}} = \frac{{M{R^2}}}{2}\int\limits_0^\pi {{{\sin }^3}\theta d\theta } \\ \left( {{I_{COM}} - 0} \right) = \frac{{M{R^2}}}{2}\int\limits_0^\pi {\sin \theta \left( {1 - {{\cos }^2}\theta } \right)d\theta } \\\end{aligned} \end{equation} $$ Let, $$\begin{equation} \begin{aligned} \cos \theta = u \\ - \sin \theta d\theta = du \\ \cos \pi = - 1\quad \ \quad \cos 0 = 1 \\\end{aligned} \end{equation} $$ So, $$\begin{equation} \begin{aligned} {I_{COM}} = \frac{{M{R^2}}}{2}\int\limits_1^{ - 1} {\left( {{u^2} - 1} \right)du} \\ {I_{COM}} = \frac{{M{R^2}}}{2}\left[ {\frac{{{u^3}}}{3} - u} \right]_1^{ - 1} \\ {I_{COM}} = \frac{{M{R^2}}}{2}\left[ {\left( {\frac{{ - 1}}{3} + 1} \right) - \left( {\frac{1}{3} - 1} \right)} \right] \\ {I_{COM}} = \frac{{M{R^2}}}{2}\left[ {\frac{4}{3}} \right] \\ {I_{COM}} = \frac{{2M{R^2}}}{3} \\\end{aligned} \end{equation} $$
So, moment of inertia along the diameter of the hollow sphere is, ${I_{COM}} = \frac{{2M{R^2}}}{3}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} {I_{COM}} = MK_{COM}^2 \\ \frac{{2M{R^2}}}{3} = MK_{COM}^2 \\ {K_{COM}} = \sqrt {\frac{2}{3}} R \\\end{aligned} \end{equation} $$
So, radius of gyration along the diameter of the hollow sphere is, ${K_{COM}} = \sqrt {\frac{2}{3}} R$

For moment of inertia about an axis which is tangent to the hollow sphere

From parallel axis theorem, $$\begin{equation} \begin{aligned} I = {I_{COM}} + M{R^2} \\ I = \frac{{2M{R^2}}}{3} + M{R^2} \\ I = \frac{{5M{R^2}}}{3} \\\end{aligned} \end{equation} $$
So, moment of inertia about an axis which is tangent to the hollow sphere is, $I = \frac{{5M{R^2}}}{3}$

Radius of gyration $(K)$ is given as, $$\begin{equation} \begin{aligned} I = M{K^2} \\ \frac{{5M{R^2}}}{3} = M{K^2} \\ K = \sqrt {\frac{5}{3}} R \\\end{aligned} \end{equation} $$
So, radius of gyration about an axis which is tangent to the hollow sphere is, $K = \sqrt {\frac{5}{3}} R$



Improve your JEE MAINS score
10 Mock Test
Increase JEE score
by 20 marks
Detailed Explanation results in better understanding
Exclusively for
JEE MAINS and ADVANCED
9 out of 10 got
selected in JEE MAINS
Lets start preparing
DIFFICULTY IN UNDERSTANDING CONCEPTS?
TAKE HELP FROM THINKMERIT DETAILED EXPLANATION..!!!
9 OUT OF 10 STUDENTS UNDERSTOOD